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PREFACE



DR. FREUNDLICH has undertaken in the
following essay to illumine the ideas and observations which gave rise
to the general theory of relativity so as to make them available to a
wider circle of readers.



I have gained the impression in perusing these pages that the author has
succeeded in rendering the fundamental ideas of the theory accessible to
all who are to some extent conversant with the methods of reasoning of
the exact sciences. The relations of the problem to mathematics, to the
theory of knowledge, physics and astronomy are expounded in a
fascinating style, and the depth of thought of Riemann, a mathematician
so far in advance of his time, has in particular received warm
appreciation.



Dr. Freundlich is not only highly qualified as a specialist in the
various branches of knowledge involved to demonstrate the subject; he is
also the first amongst fellow-scientists who has taken pains to put the
theory to the test.



May his booklet prove a source of pleasure to many!



A. EINSTEIN


















INTRODUCTION



THE Universe is limited by the properties
of light. Until half a century ago it was strictly true that we depended
upon our eyes for all our knowledge of the universe, which extended no
further than we could see. Even the invention of the telescope did not
disturb this proposition, but it is otherwise with the invention of the
photographic plate. It is now conceivable that a blind man, by taking
photographs and rendering their records in some way decipherable by his
fingers, could investigate the universe; but still it would remain true,
that all his knowledge of anything outside the earth would be derived
from the use of light and would therefore be limited by its properties.
On this little earth there is, indeed, a tiny corner of the universe
accessible to other senses: but feeling and taste act only at those
minute distances which separate particles of matter when "in contact:"
smell ranges over, at the utmost, a mile or two; and the greatest
distance which sound is ever known to have travelled (when Krakatoa
exploded in 1883) is but a few thousand miles—a mere fraction of
the earth's girdle. The scale of phenomena manifested through agencies
other than light is so small that we are unlikely to reach any
noteworthy precision by their study.



Few people who are not astronomers have spent much thought on the
limitations introduced by the news agency to which we are so profoundly

indebted. Light comes speedily
but has far to travel, and some of the news is thousands of years old
before we get it. Hence our universe is not co-existent: the part close
around us belongs to the peaceful present, but the nearest star is still
in the midst of the late War, for our news of him is three years old;
other stars are Elizabethan, others belong to the time of the Pharaohs;
and we have alongside our modern civilization yet others of prehistoric
date. The electric telegraph has accustomed us to a world in which the
news is approximately of even date: but our forefathers must have been
better able, from their daily experience of getting news many months
old, to realize the unequal age of the universe we know. Nowadays the
inequality is almost entirely the concern of the astronomer, and even he
often neglects or forgets it. But when fundamental issues are at stake,
the time taken by the messenger is an essential part of the discussion,
and we must be careful to take account of it, with the utmost precision.



Our knowledge that light had a finite velocity followed on the invention
of the telescope and the discovery of Jupiter's satellites: the news of
their eclipses came late at times and these times were identified as
those when Jupiter was unusually far away from us. But the full
consequences of the discovery were not realized at first. One such
consequence is that the stars are not seen in their true places, that is
in the places which they truly held when the light left them (for what
may have happened to them since we do not know at all—they may
have gone out or exploded). Our earth is only moving slowly compared
with the great haste of light: but still she is moving, and consequently
there is "aberration"—a displacement due to the ratio of

the two velocities, easy enough to recognize now, but so difficult to
apprehend for the first time that Bradley spent two years in worrying
over the conundrum presented by his observations before he thought of
the solution. It came to him unexpectedly, as often happens in such
cases. In his own words—"at last when he despaired of being able
to account for the phenomena which he had observed, a satisfactory
explanation of them occurred to him all at once when he was not in
search of it." He accompanied a pleasure party in a sail upon the river
Thames. The boat in which they were was provided with a mast which had a
vane at the top of it. It blew a moderate wind, and the party sailed up
and down the river for a considerable time. Dr. Bradley remarked that
every time the boat put about, the vane at the top of the boat's mast
shifted a little, as if there had been a slight change in the direction
of the wind. The sailors told him that this was due to the change in the
boat, not the wind: and at once the solution of his problem was
suggested. The earth running hither and thither round the sun resembles
the boat sailing up and down the river: and the apparent changes of wind
correspond to the apparent changes in direction of the light of a star.
But now comes a point of detail—does the vane itself affect the
wind just round it? And, similarly, does the earth itself by its
movement affect the ether just round it, or the apparent direction of
the light waves? This question suggested the famous Michelson and Morley
experiment (Phil. Mag., Dec. 1887). It is curious to think that
in the little corner of the universe represented by the space available
in a laboratory an experiment should be possible which alters our whole
conceptions of what happens in the profoundest depths of space known to

us, but so it is. The laboratory experiment of Michelson and Morley was
the first step in the great advance recently made. It discredited the
existence of the virtual stream of ether which is the natural antithesis
to the earth's actual motion. It was, indeed, open to question whether
restrictions of a laboratory might not be responsible for the result:
for the ether stream might exist, but the laboratory in which it was
hoped to detect it might be in a sheltered eddy. When bodies move
through the air, they encounter an apparent stream of opposing air, as
all motorists know: but by using a glass screen shelter from the stream
can be found. And even without such special screening, there may be
shelter. When a pendulum is set swinging in ordinary air, it is found
from experiments on clocks that it carries a certain amount of air along
with it in its movement, although the portion carried probably clings
closely to the surface of the pendulum. A very small insect placed in
the region might be unable to detect the streaming of the air further
out. In a similar way it seemed possible that as the earth moved through
the ether such tiny insects as the physicists in their laboratories
might be in a part of the ether carried along with the earth, in which
they could not detect the streaming outside. But another laboratory
experiment, this time by Sir Oliver Lodge, discredited this explanation,
and it was then suggested as an alternative that distances were
automatically altered by movement.



It may be well to explain briefly the significance of this alternative.
The Michelson-Morley experiment depended on the difference between
travelling up and down stream, and across it. To use a few figures may
be the quickest way of making the point clear. Suppose a very wide,
perfectly smooth stream running at 3 miles an hour, and that oarsmen

are to start from a fixed point   in midstream, row out in
any direction to a distance of 4 miles from  , and back again to the
starting-point  . Which is the best direction to choose? We shall
probably all agree that it will be either directly up and down stream,
or directly across it, and we may confine attention to these two
directions. First suppose an oarsman   starts straight across
stream. To keep straight he must set his boat at an angle to the stream.
If he reaches his 4 mile limit in an hour, the stream has been virtually
carrying him down 3 miles in a direction at right angles to his course:
and the well-known relation between the sides of a right-angled triangle
tells us that he has effectively pulled 5 miles in the hour. It will
take him similarly an hour to come back, and the total journey will
involve an effective pull of 10 miles.



Now suppose another oarsman,  , of equal skill elects to row up
stream. In two hours he could pull 10 miles if there were no stream; but
since meantime the stream has pulled him back 6 miles by "direct action"
he will have only just reached the 4 mile limit from the start, and has
still his return journey to go. No doubt he will accomplish this pretty
quickly with the stream to help him, but his antagonist has already got
home before he begins the return. We might have let him do his quick
journey down stream first, but it is easy to see that this would gain
him no ultimate advantage.



Michelson and Morley sent two rays of light on two journeys similar to
those of the oarsmen   and  . The stream was the supposed stream
of ether from east to west which should result from the earth's movement
of rotation from west to east. They confidently expected the return of
  before that of  , and were quite taken aback to find the

two reaching the goal together. In the aquatic analogy of which we have
made use, it would no doubt be suspected that   was really the
faster oar, which might be tested by interchanging the courses; but
there are no known differences in the velocity of light which would
allow of a parallel explanation. There was, however, the possibility
that the distances had been marked wrongly, and this was tested by
interchanging them, without altering the "dead-heat."



Now there are several alternative explanations of this result. One is
that the ether does not itself exist, and therefore there is no stream
of it, actual or apparent; and it is to this sweeping conclusion that
modern reasoning, following recent experiments and observations, is
tending. The possibility of saving the ether by endowing it with four
dimensions instead of three is scarcely calculated to satisfy those who
believed (until recently) that we knew more about the ether than about
matter itself. They saved the ether for a time by an automatic
shortening of all bodies in the direction of their movement, which
explained the dead-heat puzzle. With the velocities used above, the goal
attained by   must be automatically moved   of a mile
nearer the starting-point, so that   only rows  
miles out and back instead of 4 miles. So gross a piece of cheating
would enable   to make his dead-heat, but could scarcely escape
detection. The shortening of the course required in the case of light is
very minute indeed, because the velocities of the heavenly bodies are so
small compared with that of light. If they could be multiplied a
thousand times we might see some curious things, but we have no actual
experience to guide a forecast.



It is a great triumph for Pure Mathematics that it should have devised a

forecast for us in its own peculiar way. Starting from axioms or
postulates, Einstein, by sheer mathematical skill, making full use of
the beautiful theoretical apparatus inherited from his predecessors,
pointed ultimately to three observational tests, three things which must
happen if the axioms and postulates were well founded. One of the
tests—the movement of the perihelion of Mercury's orbit—had
already been made and was awaiting explanation as a standing puzzle.
Another—a displacement of lines in the spectrum of the
sun—is still being made, the issue being not yet clear.



The third suggestion was that the rays of light from a star would be
bent on passing near the sun by a particular amount, and this test has
just provided a sensational triumph for Einstein. The application was
particularly interesting because it was not known which of at least
three results might be attained. If light were composed of material
particles as Newton suggested, then in passing the sun they would suffer
a natural deflection (the use of the adjective is an almost automatic
consequence of modes of thought which we must now abandon) which we may
call  . On Einstein's theory the deflection would be just twice this
amount,  . But it was thought quite possible that the result
might be neither   nor   but zero, and Professor Eddington
remarked before setting out on the recent expedition that a zero result,
however disappointing immediately, might ultimately turn out the most
fruitful of all. That was less than a year ago. Perhaps a few dates are
worth remembering. Einstein's theory was fully developed and stated in
November, 1915, but news of it did not reach England (owing to the War)
for some months. In 1917 the Astronomer Royal pointed out the
special suitability of the Total Solar Eclipse of May, 1919,

as an occasion for testing Einstein's Theory. Preparations for two
Expeditions were commenced—Mr. Hinks described the geographical
conditions on the central line in November, 1917—but could not be
fully in earnest until the Armistice of November, 1918. In November,
1919, the entirely satisfactory outcome was announced to the Royal
Society and characterized by the President as necessitating a veritable
revolution in scientific thought.



But when Mr. Brose brought me his translation of the pamphlet in the
spring of 1919, the issue was still in doubt. He had become deeply
interested in the new theory while interned in Germany as a civilian
prisoner and had there made this translation. I encouraged him to
publish it and opened negotiations to that end, but it was not until we
enlisted the sympathy of Professor Eddington (on his return from the
Expedition) and approached the Cambridge Press that a feasible plan of
publication was found. Professor Eddington would have been a far more
appropriate introducer; and it is only in deference to his own express
wish that I have ventured to take up the pen that he would have used to
much better purpose. One advantage I reap from the decision: I can
express the thanks of Mr. Brose and myself to him for his practical
help, and perhaps I may add those of a far wider circle for his own able
expositions of an intricate theory, which have done so much to make it
known in England.


H. H. TURNER



UNIVERSITY OBSERVATORY,

OXFORD.

November 30, 1919
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BIOGRAPHICAL NOTE



Albert Einstein was born in March, 1879, the town Ulm, situated on the
banks of the Danube in Würtemberg, Germany. He attended school at
Munich, where he remained till his sixteenth year.



His university studies extended over the period 1896-1900 at Zürich,
Switzerland. He became a citizen of Zürich in 1901. During the
following seven years he filled the post of engineer in the Patent
Office, Bern. He accepted a call to Zürich as Professor Extraordinarius
in 1910, which he, however, soon resigned in favour of a permanent chair
in Prague University. In 1911 he decided to accept a similar post in
Zürich. Since 1914 he has continued his researches in Berlin as a
member of the Berlin Academy of Sciences.



His most important achievements are:



1905. The Special Theory of Relativity.

The discovery that all forms of energy possess

inertia.

The law underlying the Brownian movement.

The Quantum-Law of the emission and absorption of light.




1907. The fundamental notions of the general theory of

relativity.



1912. The recognition of the non-Euclidean nature of

space-determination and its connection with

gravitation.



1915. Gravitational field equations.
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INTRODUCTION



TOWARDS the end of 1915 Albert Einstein
brought to its conclusion a theory of gravitation on the basis of a
general principle of relativity of all motions. His object was to
create not a visual picture of the action of an attractive force between
bodies, but rather a mechanics of the motions of the bodies relative to
one another under the influence of inertia and gravity. To attain this
difficult goal, it is true, many time-honoured views had to be
sacrificed, but as a reward a standpoint was reached which had long
seemed the highest aim of all who had occupied their minds with
theoretical physics. The fact that these sacrifices are demanded by the
new theory must, indeed, inspire confidence in it. For the unsuccessful
attempts that have been made during the last centuries to fit the
doctrine of gravitation satisfactorily into the scheme of natural
science necessarily lead to the conclusion that this would not be
possible without giving up many deeply-rooted ideas. As a matter of
fact, Einstein reverted to the foundation pillars of mechanics as
starting-points on which to build his theory, and he did not satisfy
himself by merely reforming the Newtonian law in order to establish a
link with the more recent views.




To get at an understanding of Einstein's ideas, we must compare the
fundamental point of view adopted by Einstein with that of classical
mechanics. We then recognize that a logical development leads from "the
special" principle of relativity to the general theory, and
simultaneously to a theory of gravitation.

















THEORY OF GRAVITATION









§ 1




THE "SPECIAL" THEORY OF RELATIVITY AS A STEPPING STONE TO THE "GENERAL"
THEORY OF RELATIVITY



THE complete upheaval which we are witnessing
in the world of physics at the present time received its impulse from
obstacles which were encountered in the progress of electrodynamics.
Yet the important point in the later development was that an escape
from these difficulties was possible[1]
only by founding mechanics on a new basis.






[1]Note.—Most of the objections to the new development have, it
is admitted, been raised because a branch of science which was not
considered to have a just claim to deal with questions of mechanics,
asserted the right of exercising a far-reaching influence upon the latter,
extending even to its foundation. If, however, we trace these objections
to their source, we discover that they are due to a wish to give mechanics
the form of a purely mathematical science, similar to geometry,
in spite of the fact that it is founded upon hypotheses which
are essentially physical: up to the present, certainly, these
hypotheses have not been recognized to be such.




The development of electrodynamics took place essentially without being
influenced by the results of mechanics, and without itself exerting any
influence upon the latter, so long as its range of investigation
remained confined to the electrodynamic phenomena of bodies at
rest. Only after Maxwell's equations had furnished a foundation for
these did it become possible to take up the study of the electrodynamic
phenomena of moving media. All optical occurrences—and
according to Maxwell's theory all these also belong to the sphere of

electrodynamics—take place either between stellar bodies which are
in motion relatively to one another, or upon the earth, which revolves
about the sun with a velocity of about 30 kilometres per second, and
performs, together with the sun, a translational motion of about the
same order of magnitude through the region of the stellar system. Hence
questions of great fundamental importance at once asserted themselves.
Does the motion of a light-source leave its trace on the velocity of the
light emitted by it? And what is the influence of the earth's motion on
the optical phenomena which occur on its surface, for example, in
optical experiments in a laboratory? An endeavour was therefore to be
made to find a theory of these phenomena in which electrodynamic and
mechanical effects occurred simultaneously (vide Note 1).
Mechanics, which had long stood as a structure complete in every detail,
had to stand the test as to whether it was capable of supplying the
fitting arguments for a description of such phenomena. Thus the problem
of electrodynamic events in the case of moving matter became at the same
time a decisive problem of mechanics.



The first outstanding attempt to describe these phenomena for moving
bodies was made by H. Hertz. He extended Maxwell's equations by
additional terms so as also to express the influence of the motion of
matter on electrodynamic phenomena, and in his extensions he adopted the
view, characteristic for his theory, that the carrier of the
electromagnetic field, the ether, everywhere participates in the motion
of matter. Consequently, in his equations the state of motion of the
ether, as denoting the state of the ether, occurs as well as the
electromagnetic field. As is well known, Hertz's extensions cannot be
brought into harmony with the results of observation, for example, that

of Fizeau's experiment (Note 2), so that they excite
merely an historic interest as a land-mark on the road to an
electrodynamics of moving matter. Lorentz was the first to derive from
Maxwell's theory fundamental electrodynamic equations for moving matter
which were in essential agreement with observation. He, indeed,
succeeded in this only by renouncing a principle of fundamental
importance, namely, by disallowing that Newton's and Galilei's principle
of relativity of classical mechanics also holds for electrodynamics. The
practical success of Lorentz's theory at first almost made us fail to
see this sacrifice, but then the disintegration set in at this point
which finally made the position of classical mechanics untenable. To
understand this development we therefore require a detailed treatment of
the principle of relativity in the fundamental equations of physics.



The principle of relativity of classical mechanics is understood to
signify the consequence, which arises out of Newton's equations of
motion, that two systems of co-ordinates, moving with uniform motion in
a straight line with respect to one another, are to be regarded as fully
equivalent for the description of events in the domain of mechanics. For
our observations on the earth this means that any mechanical event on
the surface of the earth—for example, the motion of a projected
body—does not become modified by the circumstance that the earth
is not at rest, but, as is approximately the case, is moving
rectilinearly and uniformly. Yet this postulate of relativity
does not fully characterize the Newtonian principle of relativity, even
if it expresses that experimental fact which constitutes the essence of
the principle of relativity. The postulate of relativity has yet to be
supplemented by those formulæ of transformation by means of which the

observer is able to transform the co-ordinates  ,  ,  ,
  that occur in Newton's equations of motion into those of a system
of reference which is moving uniformly and rectilinearly with respect to
his own and which has the co-ordinates  ',  ',  ',  '.
Here the co-ordinates,  ,  ,  , that occur in the Newtonian
equations denote throughout the results of measurement (obtained by
means of rigid measuring rods according to the rules of Euclidean
geometry), of the spatial positions of the bodies during the event in
question, and the fourth co-ordinate   denotes the point of time
assigned to the same event given by the position of the hands of a clock
placed at the point at which the event occurs. Classical mechanics now
supplemented the postulate of relativity above formulated by equations
of transformation of the form:
 
for the cases in which we are dealing with the co-ordinate relations of
two systems of reference moving with the uniform velocity   in the
direction of the  -axis with respect to each other. This group of
so-called Galilei-transformations is distinguished, even in the case in
which the direction of motion makes any angle with the
co-ordinate axes, by the circumstance that the time-co-ordinate  
always becomes transformed by the identity   into the
time-values of the second system of reference; it is in this that the
absolute character of the time-measures manifests itself in the
classical theory. Newton's equations of mechanics do not alter their
form if we substitute the co-ordinates  ',  ',  ',
 ' in them for  ,  ,  ,   by means of these
equations of transformation. So long as we restrict ourselves to those
systems of reference among all others that emerge out of each other as a
result of transformations of the above type, there is no sense in

talking of absolute rest or absolute motion. For we may freely decide to
regard either of two systems moving in such a way as the one that is at
rest or in motion. According to classical mechanics it was, indeed,
believed that only the Galilei-transformations could come into question
when we were concerned with referring equivalent systems of reference to
each other according to the principle of relativity. This, however, is
not the case. The recognition of the fact that other equations of
transformation may come into question for this purpose, and, indeed, may
be chosen to suit the facts of observation which are to be accounted
for, the recognition of this fact is the characteristic feature of the
"special" theory of relativity of Lorentz-Einstein which replaced
that of Galilei-Newton. Lorentz's fundamental equations of the
electrodynamics of moving matter led to it. This system of
electrodynamics, which is in satisfactory agreement with observation, is
founded, in contradistinction to Hertz's theory, on the view of an
absolutely rigid ether at rest. Its fundamental equations assume as its
favoured system the co-ordinate system that is at rest in the ether.



These fundamental electrodynamical equations of Lorentz, however, change
their form if, in them, we replace the co-ordinates  ,  ,  ,
  of a system of reference, initially chosen, by the co-ordinates
 ',  ',  ',  ' of a system moving uniformly and
rectilinear with respect to the former by means of the transformation
relationships. Must we infer from this that systems of reference which
are moving uniformly and rectilinearly with respect to each other are
not equivalent as regards electrodynamic events, and that there
is no relativity principle of electrodynamics? No, this inference is not
necessary, because, as remarked, the principle of relativity of

classical mechanics with its group of equations of transformation does
not represent the only possible way of expressing the equivalence
of systems of reference that are moving uniformly and rectilinearly with
respect to each other. As we shall show in the sequel, the same
postulate of relativity may be associated with another group of
transformations. Nor did experiment seem to offer a reason for answering
the above question in the affirmative. For all attempts to prove by
optical experiments in our laboratories on the earth the progressive
motion of the latter gave a negative result (Note 2).
According to our observations of electrodynamic events in the laboratory
the earth may be regarded equally well as at rest or in motion; these
two assumptions are equivalent.



This led to the definite conviction that in fact a principle of
relativity holds for all phenomena, be their character mechanical or
electrodynamic. But there can be only one such principle, and not
one for mechanics and another for electrodynamics. For two such
principles would annul each other's effects because we should be able to
derive a favoured system from them in the case of events in which
mechanical and electrodynamical events occur in conjunction, and this
favoured system would allow us to talk with sense of absolute rest or
motion with regard to it.



The one escape from this difficulty is that opened up by Einstein. In
place of the relativity principle of Galilei and Newton we have to set
another which comprehends the events of mechanics and electrodynamics.
This may be done, without altering the postulate of relativity
formulated above, by setting up a new group of transformations, which
refer the co-ordinates of equivalent systems of reference to one
another. The fundamental equations of mechanics must, certainly, then be

remodelled so that they preserve their form when subjected to such a
transformation. Starting-points for this remodelling were already given.
For it had been found empirically that Lorentz's fundamental equations
of electrodynamics allowed new kinds of transformations of co-ordinates,
namely, those of the form
 
where   = velocity of light in vacuo.



The new principle of relativity set up by Einstein is as follows:
Systems that are moving uniformly and rectilinearly with respect to
each other are completely equivalent for the description of physical
events. The equations of transformation that allow us to pass from the
co-ordinates of one such system to those of another possible system,
however, are not then (for the case when both systems are moving
parallel to their  -axes with the constant velocity  ):—
 
but
 


Thus the Galilei-Newton principle of relativity of
classical mechanics and the Lorentz-Einstein "special" principle of
relativity differ only in the form of the equations of transformation
that effect the transition to equivalent systems of reference
(Note 3).



Moreover, the relation of these two different transformation formulæ to

each other comes out clearly in the circumstance that the equations of
transformation of Galilei and Newton may be derived by a simple passage
to the limit from the new equations of Lorentz and Einstein. For if we
assume the velocity   of each system with respect to the other to be
very small compared with the velocity of light  , so that the
quotient   or   respectively, may be
neglected in comparison with the remaining terms—an admissible
assumption in all cases with which classical mechanics had so far
dealt—the Lorentz-Einstein transformations pass over into those of
Newton and Galilei.



It immediately suggests itself to us to ask what it is that compels us
to give up the principle of relativity of classical mechanics, that is,
what are the physical assumptions in its equations of transformation
that stand, in contradiction with experience? The answer is that the
principle of relativity of Newton and Galilei does not account for the
facts of experience that emerge from Fizeau's and the Michelson-Morley
experiment, and from which it may be inferred that the velocity of light
has the particular character of a universal constant in the
transformation relationships of the principle of relativity. In how far
this peculiar property of the velocity of light receives expression in
the new equations of transformation requires the following detailed
explanation.



The equations of transformation of the principle of relativity of
Galilei and Newton contain a hypothesis (which had hitherto not been
recognized as such). For it had been tacitly assumed that the following
assumption was fulfilled quite naturally: if an observer in a
co-ordinate system   measure the velocity   of the

propagation of some effect or other, for example, a sound wave, then an
observer in another co-ordinate system  ' which is moving
relatively to  , necessarily obtains a different measure for
the velocity of propagation of the same action. This was to hold for
every finite velocity  . Only infinite velocity was to be
distinguished by the singular property that it was to come out in every
system independently of its state of motion as having exactly the same
value in all the measurements, namely, the value infinity.



This hypothesis—for we are here, of course, dealing only with a
purely physical hypothesis—immediately suggested itself. Without
further test there was no support for supposing that also a finite
velocity, namely, the velocity of light, which the naïve point of view
is inclined to endow with infinitely great velocity, would manifest the
same singular property.



The fact, however, which the Michelson-Morley experiment helped us to
become aware of was that the law of propagation for light is, for the
observer, independent of any progressive motion of his system of
reference, and has the property of isotropy (that is, equivalence of all
systems) (cf. Note 2), so that it
immediately suggests itself to us that the velocity of light is to be
considered as having the same value for all systems of reference. The
recognition of the fact thus arrived at was, without doubt, a surprise,
but it will appear less strange to those who bear in mind the particular
rôle of the velocity of light in the equations of Maxwell, the
foundation of our theory of matter.



In consequence of this peculiarity, the velocity of light occurs in the
equations of kinematics as a universal constant. To understand
this better we pursue the following argument. Long before the

advent of the questions of electrodynamic phenomena in moving bodies we
might, on grounds of principle, have suggested quite generally the
question: how are the co-ordinates in two systems of reference that are
moving uniformly and rectilinearly with respect to each other to be
referred to each other? We should have been able to attack the purely
mathematical problem with a full consciousness of the assumptions
contained in the hypotheses, as was actually done later by Frank and Rothe
(Note 4). We then arrive at equations of
transformation that are much more general than those written down
on p. 9. By taking into account the special
conditions that nature manifests to us, for example the isotropy of
space, we may derive from them particular forms, the hypothetical
assumptions contained in which come clearly to view. Now, in these
general equations of transformation a quantity occurs that deserves
special notice. There are "invariants" of these equations of
transformation, that is, quantities that preserve their value even when
such a transformation is carried out. Among these invariants there is a
velocity. This signifies the following: if an effect propagates itself
in one system with the velocity  , then in general the velocity of
propagation of the same effect in another system is other than  , if
the second system is moving relatively to the first. Only the invariant
velocity preserves its value in all systems, no matter with what
velocity they be moving relatively to one another. The value of this
invariant velocity enters as a characteristic constant into the
equations of transformation. Hence, if we wish to find those
transformation relations that hold physically, we must find out
the singular velocity that plays this fundamental part. To determine it

is the task of the experimental physicist. If he sets up the
hypothesis that a finite velocity can never be such an invariant,
the general equations of transformation degenerate into the
transformation-relationships of the principle of relativity of Galilei
and Newton. (This hypothesis was made, albeit unconsciously, in
Newtonian mechanics.) It had to be discarded after the results of the
Michelson-Morley and Fizeau's experiment had justified the view that the
velocity of light   plays the part of an invariant velocity.
Then the general equations of transformation degenerate into
those of the "special" principle of relativity of Lorentz and Einstein.



This remodelling of the co-ordinate-transformations of the principle of
relativity led to discoveries of fundamental importance, as, for
example, to the surprising fact that the conception of the
"simultaneity" of events at different points of space, the conception on
which all time-measurements are based, has only a relative meaning, that
is, that two events that are simultaneous for one observer will not, in
general, be simultaneous for another. [2] This deprived time-values of the

absolute character which had previously been a great point of
distinction between them and space co-ordinates. So much has been
written in recent years about this question that we need not treat it in
detail here.






[2]The assertion, "At a particular point of the earth the sun
rises at 5 o'clock 10'6"," denotes that "the rising of the sun at a
particular point of the earth is simultaneous with the arrival of the
hands of the clock at the position 5 o'clock 10'6" at that point of the
earth." In short, the determination of the point of time for the
occurrence of an event is the determination of the simultaneity of
happening of two events, of which one is the arrival of the hands of a
clock at a definite position at the point of observation. The comparison
of the points of time at which one and the same event occurs,
as noted by several observers situated at different points, requires a
convention concerning the times noted at the different points. The
analysis of the necessary conventions led Einstein to the fundamental
discovery that the conception "simultaneous" is only "relative
inasmuch as the relation of time-measurements to one another in
systems that are moving relatively to one another is dependent on
their state of motion. This was the starting-point for the arguments
that led to the enunciation of the "special principle of relativity."





The new form of the equations of transformation by no means exhausts the
whole effect of the principle of relativity upon classical mechanics.
The change which it brought about in the conception of mass was almost
still more marked.



Newtonian mechanics attributes to every body a certain inertial mass, as
a property that is in no wise influenced by the physical conditions to
which the body is subject. Consequently, the Principle of the
Conservation of Mass also appears in classical mechanics as independent
from the Principle of the Conservation of Energy. The special principle
of relativity shed an entirely new light on these circumstances when it
led to the discovery that energy also manifests inertial mass, and it
hereby fused together the two laws of conservation, that of mass and
that of energy, to a single principle. The following circumstance moves
us to adopt this new view of the conception of mass.



The equations of motion of Newtonian mechanics do not preserve their
form when new co-ordinates have been introduced with the help of the
Lorentz-Einstein transformations. Consequently, the fundamental equation
of mechanics had to be remodelled accordingly. It was then found that
Newton's Second Law of Motion: force = mass x accel. cannot be
retained, and that the expression for the kinetic energy of a body may
no longer be furnished by the simple expression
 , which involves the mass and the
velocity. Both these results are consequences of the change which we
found necessary to make in our view of the nature of the mass

of matter. The new principle of relativity and the equations of
electrodynamics led, rather, to the fundamentally new discovery that
inertial mass is a property of every kind of energy, and that a
point-mass, in emitting or absorbing energy, decreases or increases,
respectively, in inertial mass, as is shown in Note
5 for a simple case. The new kinematics thereby disposes of the
simple relation between the kinetic energy of a body and its velocity
relatively to the system of reference. The simplicity of the expression
for the kinetic energy in Newtonian mechanics rendered possible the
revolution of the energy of a body into that (kinetic) of its motion and
of the internal energy of the body, which is independent of the former.
Let us consider, for example, a vessel containing material particles, no
matter of what kind, in motion. If we resolve the velocity of each
particle into two components, namely, into the velocity, common to all,
of the centre of gravity and the accidental velocity of a particle
relative to the centre of gravity of the system, then, according to the
formulæ of classical mechanics, the kinetic energy divides up into two
parts: one that contains exclusively the velocity of the centre of
gravity and that represents the usual expression for the kinetic energy
of the whole system (mass of the vessel plus the mass of the
particles), and a second component that involves only the inner
velocities of the system. This category of internal energy is no longer
possible so long as the expression for the kinetic energy contains the
velocity not merely as a quadratic factor; so we are led to the view
that the internal energy of the body comes into expression in the energy
due to its progressive motion, and, indeed, as an increase in the
inertial mass of the body.



This discovery of the inertia of energy created an entirely new

starting-point for erecting the structure of mechanics. Classical
mechanics regards the inertial mass of a body as an absolute,
invariable, characteristic quantity. The special theory of relativity,
it is true, makes no direct mention of the inertial mass associated with
matter, but it tells us that every kind of energy
has also inertia. But, as every kind of matter has at all times a
probably enormous amount of latent energy, its inertia is composed of
two components; the inertia of the matter and the inertia of its
contained energy, which consequently alters with the amount of the
energy-content. This view leads us naturally to ascribe the phenomenon
of inertia in bodies to their energy-content altogether.



Thus, there arose the important task of absorbing these new discoveries
concerning the nature of inert mass into the principles of mechanics. A
difficulty hereby arose which, in a certain sense, pointed out the
limits of achievement of the special theory of relativity. One of the
fundamental facts of mechanics is the equality of the inertial and
gravitational mass of a body. It is on the supposition that this is true
that we determine the mass of a body by measuring its weight. The weight
of a body is, however, only defined with reference to a gravitational
field (Note 18): in our case, with reference
to the earth. The idea of inertial mass of a body is, however,
introduced as an attribute of matter without any reference whatsoever
to physical conditions external to the body. How does the mysterious
coincidence in the values of the inertial and gravitational mass of a
body come about?



Nor does the special theory of relativity provide an answer to this
question. The special theory of relativity does not even preserve the

equality in the values of inertia and gravitational mass; a fact which
is to be reckoned amongst the most firmly established facts in the whole
of physics. For, although the special theory of relativity makes
allowance for an inertia of energy, it makes none for a
gravitation of energy. Consequently, a body which absorbs energy
in any way will register a gain of inertia but not of weight, thereby
transgressing the principle of the equality of inertial and
gravitational mass; for this purpose a theory of gravitational
phenomena, a theory of gravitation, is required. The special theory of
relativity can, therefore, be regarded only as a stepping-stone
to a more general principle, which orders gravitational phenomena
satisfactorily into the principles of mechanics.



This is the point where Einstein's researches towards establishing a
general theory of relativity set in. He has discovered that, by
extending the application of the relativity-principle to accelerated
motions, and by introducing gravitational phenomena into the
consideration of the fundamental principles of mechanics, a new
foundation for mechanics is made possible, in which all the difficulties
occurring up to the present are solved. Although this theory represents
a consistent development of the knowledge gathered by means of the
special theory of relativity, it is so deeply rooted in the substructure
of our principles of knowing, in their application to physical
phenomena, that it is possible thoroughly to grasp the new theory only
by clearly understanding its attitude toward these guiding lines
provided by the theory of knowledge.



I shall, therefore, commence the account of his theory by discussing two
general postulates, which should be fulfilled by every physical law, but

neither of which is satisfied in classical mechanics: whereas their
strict fulfilment is a characteristic feature of the new theory. Here we
have thus a suitable point of entry into the essential outlines of the
general theory of relativity.

















§ 2




TWO FUNDAMENTAL POSTULATES IN THE
MATHEMATICAL FORMULATION OF PHYSICAL LAWS



NEWTON had established the simple and
fruitful law that two bodies, even when they are not visibly connected
with one another, as in the case of the heavenly bodies, exert a mutual
influence, attracting one another with a force directly proportional to
the product of their masses, and inversely proportional to the square of
the distance between them. But Huygens and Leibniz refused to
acknowledge the validity of this law, on the ground that it did not
satisfy a fundamental condition to which every physical law is subject,
viz. that of continuity (continuity in the transmission of force,
action "by contact" in contradistinction to action "at a distance"). How
were two bodies to exert an influence upon one another without a medium
between them to transmit the action? The demand for a satisfactory
answer to this question became, in fact, so imperative that finally, in
order to satisfy it, the existence of a substance which pervaded the
whole of cosmic space and permeated all matter—the "luminiferous
ether"—was assumed, although this substance seemed to be condemned
to remain intangible and invisible (i.e. imperceptible to the senses for
all time) and had to be endowed with all sorts of contradictory

properties. In the course of time, however, there arose in opposition to
such assumptions the more and more definite demand that, in the
formulation of physical laws, only those things were to be regarded as
being in causal connection which were capable of being actually
observed: a demand which doubtless originates from the same instinct
in the search for knowledge as that of continuity, and which really
gives the law of causality the true character of an empirical
law, i.e. one of actual experience.



The consistent fulfilment of these two postulates combined together is,
I believe, the mainspring of Einstein's method of investigation; this
imbues his results with their far-reaching importance in the
construction of a physical picture of the world. In this respect his
endeavours will probably not encounter any opposition in the matter of
principle on the part of scientists. For both postulates—(1)
that of continuity and (2) that of causal relationship between
only such things as lie within the realm of observation—are of an
inherent nature, i.e. contained in the very nature of the problem. The
only question that might be raised is whether it is expedient to
abandon such useful working hypotheses as "forces at a distance."



The principle of continuity requires that all physical laws allow of
formulation as differential laws, i.e. physical laws must be expressible
in a form such that the physical state at any point is completely
determined by that of the point in its immediate neighbourhood.
Consequently, the distances between points, which are at finite
distances from one another, must not occur in these laws, but only those
between points infinitely near to one another. The law of attraction of
Newton given above, inasmuch as it involves "action at a distance,"
disobeys the first postulate.




The second postulate, that of a stricter form of expression for
causality in its occurrence in physical laws, is intimately connected
with a general theory of relativity of motions. Such a general principle
of relativity requires that all possible systems of reference in nature
be equivalent for the description of physical phenomena, and hence it
avoids the introduction of the very questionable conception of absolute
space which, for reasons we know (see § 4),
could not be circumvented by Newtonian mechanics. A general theory of
relativity would, in excluding the fictitious quantity "absolute space,"
reduce the laws of mechanics to motions of bodies relative to one
another, which are actually and exclusively what we observe. Thus, its
laws would be founded on observed facts more completely than are those
of classical mechanics.



The rigorous application of the principles of continuity and relativity
in their general form penetrates deeply into the problem of the
mathematical formulation of physical laws. It will, therefore, be
essential at the outset to enter into a consideration of the principles
involved in the latter process.

















§ 3




CONCERNING THE FULFILMENT OF THE TWO POSTULATES



A PHYSICAL law is clothed in mathematical
language by setting up a formula. This comprises, and represents in the
form of an equation, all measurements which numerically describe the
event in question. We make use of such formulæ, not only in cases in
which we have the means of checking the results of our calculations at
any moment actually at our disposal, but also when the corresponding
measurements cannot really be carried out in practice, but have
to be imagined, i.e. only take place in our minds: e.g. when we
speak of the distance of the moon from the earth, and express it in
metres, as if it were really possible to measure it by applying a
metre-rule end to end.



By means of this expedient of analysis we have extended the range of
exact scientific research far beyond the limits of measurement actually
accessible in practice, both in the matter of immeasurably large, as
well as in that of immeasurably small, quantities. Now, when such a
formula is used to describe an event, symbols occur in it that stand for
those quantities which are, in a certain sense, the ground elements of
the measurements, with the help of which we endeavour to grip the event;
thus, for example, in the case of all spatial measurements, symbols for
the "length" of a rod,

the "volume" of a cube, and so forth. In creating these ground elements
of spatial elements we had hitherto been led by the idea of a rigid body
which was to be freely movable in space without altering any of its
dimensional relationships. By the repeated application of a rigid unit
measure along the body to be measured we obtained information about its
dimensional relationships. This idea of the ideal rigid measuring rod,
which is only partially realizable in practice, on account of all sorts
of disturbing influences such as the expansion due to heat, represents
the fundamental conception of the geometry of measure.



The discovery of suitable mathematical terms, which can be inserted in a
formula as symbols for definite physical magnitudes of measurements,
such as e.g. length of a rod, volume of a cube, etc., in
order to shift the responsibility, as it were, for all further
deductions upon analysis, is one of the fundamental problems of
theoretical physics and is intimately connected with the two
postulates enunciated in § 2.



To realize this fully, we must revert to the foundations of geometry,
and analyse them from the point of view adopted by Helmholtz in various
essays, and by Riemann in his inaugural dissertation of 1854: "On the
hypotheses which lie at the bases of geometry." Riemann points almost
prophetically to the path now taken by Einstein.









(a) THE LINE-ELEMENT IN THE
THREE-DIMENSIONAL MANIFOLD OF POINTS IN SPACE, EXPRESSED
IN A FORM COMPATIBLE WITH THE TWO POSTULATES




Every point in space can be singly and unambiguously defined by the

three numbers  ,  ,  , which may be regarded as
the co-ordinates of a rectangular system of co-ordinates, and which
distinguish it from all other points; a continuous variation of these
three numbers enables us to specify every single point of space in turn.
The assemblage of points in space represents, in Riemann's notation, "a
multiply extended magnitude" (an  -fold manifoldness or manifold)
between the single elements (points) of which a continuous
transition is possible. We are familiar with diverse continuous
manifolds, e.g. the system of colours, of tones and various others. A
feature which is common to all of them is that, in order to specify a
single element out of the entire manifold (to define a particular
point, a particular colour, or a particular tone), a
characteristic number of magnitude-determinations, i.e. co-ordinates, is
required: this characteristic number is called the dimensions of
the respective manifold. Its value is three for space, two for a plane,
one for a line. The system of colours is a continuous manifold of the
dimension three, corresponding to the three "primary" colours, red,
green, and violet, by mixing which in due proportions every
colour can be produced.



But the assumption of continuity for the transition from one element to
another in the same manifold, and the determination of the dimensions of
the latter, does not give us any information about the possibility of
comparing limited parts of the same manifold with one another, e.g.
about the possibility of comparing two tones with one another or two
single colours; i.e. nothing has yet been stated about the metric
relations (measure-conditions) of the manifold, about the nature of the
scale, according to which measurements can be undertaken within the
manifold. In order to be able to do this, we must allow experience to

give us the facts from which to establish the metric (measure-) laws
which hold for each particular manifold (space-points, colours, tones)
under various physical conditions; these metric laws will be different
according to the set of empirical facts chosen for this purpose.[3]






[3]Vide Note 2.




In the case of the manifold of space-points, experience has taught us
that finite rigid point-systems can be freely moved in space
without altering their form or dimensions; the conception of "congruence"
which has been derived from this fact, has become a vital factor for a
measure-determination.[4]
It sets us the problem of building up a mathematical expression from the
numbers  ,  ,  , and  ,  ,
 , which are assigned to two definite points in space, and which
we may imagine as the end-points of a rigid measuring rod, such that
this expression may be regarded as a measure of the distance between
them, that is, as an expression for the length of the rod, and may be
introduced as such into the formulae expressing physical laws.






[4]Vide Note 3.




The equations of physical laws, which—in order to fulfil the
conditions of continuity—must be differential laws, contain only
the distances  , of infinitely near points, so-called
line-elements. We must, therefore, inquire whether our two
postulates of § 2 have any influence upon the
analytical expression for the line-element  , and, if so, which
expression for the latter is compatible with both. Riemann demands of a
line-element in the first place that it can be compared in respect
to its length with every other line-element independently of its
position and direction. This is a distinguishing characteristic of the
metric conditions ("measure relations") prevalent in space; in practice

it denotes that the rods must be freely movable. This peculiarity does
not exist, for instance, in the manifold of tones or in that of colours
(vide Note 7). Riemann formulates this
condition in the words, "that lines must have a length independent of their
position and that every line is to be measurable by means of any other." He
then discovers that: if  ,  ,   and
 ,  ,   respectively
denote two infinitely near points in space and if the continuously variable
numbers  ,  ,   are any co-ordinates
whatsoever (not e.g. necessarily rectilinear), then the square root of an
always positive, integral, homogeneous function of the second degree in the
differentials  ,  ,   has all the
properties[5] which the line-element, being
the expression for the length of an infinitely small rigid measuring rod,
must exhibit. We thus find that
 
in which the coefficients   are continuous functions of the
three variables  ,  ,  , gives us an expression
for the line-element at the point  ,  ,  .






[5]Vide Note 8.




In this expression no assumptions are made concerning the nature of the
co-ordinates that are represented by the three variables,  ,
 ,  , that is, concerning particular metrical properties
of the manifold that go beyond the postulate of the freedom of movement
of the measuring rods. But, if we demand, in particular, that each point
of the manifold may be fixed by means of rectangular Cartesian
co-ordinates, whereby particular assumptions are made concerning the
possible ways of placing the measuring rods, then the line-element,

expressed in these special variables, assumes the form
 
Hitherto this expression has always been introduced for the length of
the line-element in all physical laws. It is contained in the more
general expression of Riemann's line-element   as the special case
 
By restricting ourselves to this special form of the line-element we are
enabled to use the measure laws of Euclidean geometry in all our
space-measurements.



But this particular assumption concerning the metrical constitution of
space contains the hypothesis, as Helmholtz has shown in a detailed
discussion, that finite rigid point-systems, i.e. finite
fixed distances, are capable of unrestrained motion in space, and can be
made (by superposition) to coincide with other (congruent)
point-systems. With respect to the postulate of continuity, this
hypothesis seems inconsistent, in so far as it introduces implicit
statements about finite distances into purely differential laws, in
which only line-elements occur; but it does not contradict
the postulate.



The postulate of the relativity of all motion adopts a different attitude
towards the possibility of giving the line-element the Euclidean form in
particular.[6]






[6]Strictly speaking, I should at this juncture state in anticipation
that the above investigations can manifestly also be so generalized as
to be valid for the four-dimensional space-time manifold, in which
all events actually take place, and that the transformation-formulæ
apply to the four variables of this manifold. In these general remarks
the neglect of the fourth dimension is of no importance. This statement
will be justified later in § 3(b).








According to the principle of the relativity of all motions, all
systems, which come about owing to relative motions of bodies towards
one another, may be regarded as fully equivalent. The laws of
physics must, therefore, preserve their form in passing from one such
system to another; i.e. the transformation-formulæ of the variables
 ,  ,   which perform this transition to another
system, must not alter the analytical expression for the physical law
under consideration.



This leads us to set up a principle of relativity which will be called
the general principle of relativity in the sequel. It demands the
invariance of physical laws with respect to arbitrary continuous
substitutions of the four variables. Moreover, the line-element that
occurs in it must preserve its form when subjected to any arbitrary
transformations whatsoever. This condition is fully satisfied by the
line-element
 
in which no restrictive reservations of any description are made as to
what the co-ordinates  ,  ,   are to signify.
The Euclidean line-element
 
on the other hand, preserves its form only for transformations of
the special theory of relativity, which confine themselves to
systems moving uniformly and rectilinearly. Consequently, the
element of arc must be adapted to the further requirements of a general
theory of relativity so that it preserves its form after any
substitutions whatsoever.









The choice of the expression  

to represent the line-element in physical laws is, in spite of its very
general character, still to be regarded as a hypothesis, as Riemann has
already pointed out. For there are other functions of the differentials
 ,  ,  —such as e.g. the fourth root of
a homogeneous differential expression of the fourth degree in these
variables—which could provide a measure for the length of the
line-element (vide Note 9). But at present
there is no ground for abandoning the simplest general expression for the
line-element (viz. that of the second degree), and adopting more
complicated functions. Within the range (of fulfilment) of the two
postulates, which we have imposed upon every description of physical
events, the former expression for   satisfies all requirements.
Nevertheless, it must never be forgotten that the choice of an analytical
expression for the line-element always contains a hypothetical factor; and
it is the duty of the physicist to remain fully conscious of this fact at
all times, without being in any way prejudiced. It is for this reason that
Riemann closes his essay with the following remarks, which impress one
particularly with their great importance for the present time:[7]






[7]B. Riemann, Über die Hypothesen, welche der Geometrie
zugrunde liegen. New edn., annotated by H. Weyl, Berlin: Springer
& Co., 1919.




"The question of the validity of the hypotheses of geometry in the
infinitely small is bound up with the question of the ground of the
metric relations of space. In this question, which we may still
regard as belonging to the doctrine of space, is found the application
of the remark made above; that in a discrete[8]
manifold, the principle or character of its metric relations is already
given in the notion of the manifold, whereas in a continuous manifold
this ground has to be found elsewhere, i.e. has to come from outside.






[8]Vide Note 6.







"Either, therefore, the reality which underlies space must form a
discrete[9] manifold, or we must seek the
ground of its metric relations (measure-conditions) outside it, in binding
forces which act upon it.






[9]Vide Note 10.




"A decisive answer to these questions can be obtained only by starting
from the conception of phenomena which has hitherto been justified by
experience, and of which Newton laid the foundation, and then making in
this conception the successive changes required by facts which admit of
no explanation on the old theory; researches of this kind, which
commence with general notions, cannot be other than useful in preventing
the work from being hampered by too narrow views, and in keeping
progress in the knowledge of the inter-connections of things from being
checked by traditional prejudices.



"This carries us over into the sphere of another science, that of
physics, into which the character and purpose of the present discussion
will not allow us to enter."



That is to say: according to Riemann's view these questions are to be
solved by starting from Newton's view of physical phenomena, and
compelled by facts which do not allow of any explanation by it,
gradually remoulding it. This is what Einstein has done. The "binding
forces," to which Riemann points, will be found again in Einstein's
theory. As we shall see in the fifth chapter, Einstein's theory of
gravitation is based upon the view that the gravitational forces are the
"binding forces," i.e. they represent the "inner ground" of the metric
conditions (measure-relations) in space.














(b) THE LINE-ELEMENT IN THE FOUR-DIMENSIONAL
MANIFOLD OF SPACE-TIME POINTS, EXPRESSED
IN A FORM COMPATIBLE WITH THE TWO POSTULATES




The measure-conditions, which we were to take as a basis for the
formulation of physical laws, could have been treated immediately in
connection with the four-dimensional manifold of space-time points. For
the special theory of relativity has led us to make the important
discovery that the space-time-manifold has uniform measure-relations in
its four dimensions. Nevertheless, I wish to treat time-measurements
separately; for one reason that it is just this result of the
relativity-theory which has experienced the greatest opposition at the
hands of supporters of classical mechanics; and for another that
classical mechanics is also obliged to establish certain conditions
about time-measurement, but that it never succeeded in establishing
agreement on this point. The difficulties with which classical mechanics
had to contend are contained in its fundamental conceptions. The law of
inertia, particularly, was a permanent factor of discord that caused the
foundations of mechanics to be incessantly criticised. And since the
foundations of time-measurement had been brought into close relationship
with the law of inertia, these critical attacks applied to them
likewise.



In Galilei's law of inertia, a body which is not subject to external
influences continues to move with uniform motion in a straight line. Two
determining elements are lacking, viz. the reference of the motion to a
definite system of co-ordinates, and a definite time-measure. Without a
time-measure one cannot speak of a uniform velocity.




Following a suggestion by C. Neumann,[10] the law
of inertia has itself been adduced to give a definition of a
time-measure in the form: "Two material points, both left to themselves,
move in such a way that equal lengths of path of the one correspond to
equal lengths of path of the other." On this principle, into which
time-measure does not enter explicitly, we can define "equal intervals
of time as such, within which a point, when left to itself, traverses
equal lengths of path."



This is the attitude which was also taken up by L. Lange, H. Seeliger,
and others, in later researches. Maxwell selected this definition too
(in "Matter and Motion"). On the other hand, H. Streintz[11] (following
Poisson and d'Alembert) has demanded the disconnection and independence
of the time-measure from the law of inertia, on the ground that the
roots of the time-concept have a deeper and more general foundation than
the law of inertia. According to his opinion, every physical
event, which can be made to take place again under exactly the same
conditions, can serve for the determination of a time-measure, inasmuch
as every identical event must claim precisely the same duration
of time; otherwise, an ordered description of physical events would be
out of the question. In point of fact, the clock is constructed on this
principle. It is this principle which enables an observer to undertake a
time-measurement at least for his place of observation.






[10]Vide Note 11.






[11]Vide Note 12.




The reduction of time-measurements to a dependence upon the law of
inertia, on the other hand, leads to an unobjectionable definition of
equal lengths of time; but the measurement of the equal paths
traversed by uniformly moving bodies, and the establishment of a
unit of time involved therein, are only then possible for a place of

observation, when the observer and the moving body are in constant
connection, e.g. by light-signals. It cannot, however, be straightway
assumed that two observers, who are in rectilinear motion relatively to
one another, and, therefore, according to the law of inertia, equivalent
as reference systems, would in this manner gain identical results in
their time-measurements. Poisson's idea thus leads to a satisfactory
time-measurement for a given place of observation itself; i.e. in
a certain sense it allows the construction of a clock for that place.
But it does not broach the question of the time-relations of
different places with one another at all; whereas
Neumann's suggestion leads directly to those questions which have been a
centre of discussion since Einstein's enunciation of the
relativity-principle.



In the endeavour to reduce classical mechanics to as small a number of
principles as possible, in perfect agreement with one another, writers
resorted to ideal-constructions and imaginary experiments.



Yet no one conceived the idea that in fixing a unit of time on the basis
of the law of inertia, that is, by measuring a length (the distance
traversed), the state of motion of the observer might exert an
influence. It was assumed that the data obtained from the necessary
observations had an absolute meaning quite independent of the conditions
of observation when simultaneous moments were chosen and a length was
evaluated. As Einstein has shown, however, this is not the case. Rather,
this recognition of the relativity of space- and time-measurements
formed the starting point of his principle of relativity (Note 13). It is a necessary consequence of the
universal significance of the velocity of light, of which we spoke in
the first section. Its recognition furnished us at
 
once with the correct formulae of transformation, allowing us to relate the
space-time measurements of systems moving uniformly and rectilinearly with
respect to each other, and this is what we are concerned with in Neumann's
suggestion of fixing a measure of time with the aid of the law of inertia.
In the new equations of transformation,  ' is not identically equal to
 , but rather
 
The time-measurements in the second system which is moving relatively to
the first are thus essentially conditioned by the velocity   of each
relative to the other. Consequently, the fixing of a measure of time on
the basis of the law of inertia, as proposed by Neumann, does not at all
lead to the result that the time-measurements are entirely independent
of the state of motion of the systems with respect to each other, as
assumed in classical mechanics. Only when the researches of Einstein
concerning the special theory of relativity had been carried out, did
the fundamental assumptions of our time-measurements become fully
cleared up, and thus a serious shortcoming in classical mechanics was
made good.



That such a fundamental revision of the assumptions made regarding
time-measurements became necessary only after so great a lapse of time,
is to be explained by the fact that even the velocities which occur in
astronomy are so small, in comparison with the velocity of light, that
no serious discrepancies could arise between theory and observation. So
it occurred that the weaknesses of the theory—in particular, those

due to the motional relations of various systems to one
another—did not come to light until the study of electronic
motions, in which velocities of the order of that of light occur, proved
the insufficiency of the existing theory.



The details of the effects, which result from the relativity of
space-time measurements, have so frequently been discussed in recent
years that it is only possible to repeat what has already often been said.
The essential point in the discussion of this section
is the recognition of the fact that space and time represent a
homogeneous manifold of "four" dimensions, with homogeneous
measure-relations (vide Note 14).
Consequently, to be consistent, we must apply .the arguments of the
preceding § 3(a) about the
measure-relations to the four-dimensional space-time-manifold; and, in view
of the two fundamental postulates (1) of continuity and (2) of relativity,
and including the time-measurement as the fourth dimension, we must select
for our line-element the expression:
 
in which the   ( ) are functions
of the variables  ,  ,  ,  .



Hitherto we have been led to adopt this much more general attitude
towards the questions of the metric laws involved in physical formulæ
merely by the desire not to introduce, from the very outset, more
assumptions into the formulations of physical laws than are compatible
with both postulates, and to bring about a deeper appreciation of the
points of view, to which the special theory of relativity has led
us.



We can briefly summarize by saying: the adoption of Euclidean
metric-conditions (measure-relations) is compatible with the
postulate of continuity; though the special assumptions thereby
involved  appear as
restrictive or limiting hypotheses, which need not be made. But
the second postulate, the reduction of all motions to
relative motions, compels us to abandon the Euclidean
measure-determination (cf. p. 43). A
description of the difficulties still remaining in mechanics will make this
step clear.

















§ 4




THE DIFFICULTIES IN THE PRINCIPLES OF
CLASSICAL MECHANICS



THE foundations of classical mechanics
cannot be exhaustively described in a narrow space. I can only bring the
unfavourable side of the theory into prominent view for the present
purpose, without being able to do justice to its great achievements in
the past. All doubts about classical mechanics set in at the very
commencement with the formulation of the law which Newton places at its
head, the formulation of the law of inertia.



As has already been emphasized on page 31, the
assertion that a point-mass which is left to itself moves with uniform
velocity in a straight line, omits all reference to a definite co-ordinate
system. An insurmountable difficulty here arises: Nature gives us actually
no co-ordinate system, with reference to which a uniform rectilinear motion
would be possible. For as soon as we connect a co-ordinate system with
any body such as the earth, sun, or any other body—and this alone
gives it a physical meaning—the first condition of the law of
inertia (viz. freedom from external influences) is no longer fulfilled,
on account of the mutual gravitational effects of the bodies. One must
accordingly either assign to the motion of the body a meaning in itself,

i.e. grant the existence of motions relative to "absolute" space, or
have recourse to mental experiments by following the example of C.
Neumann and introducing a hypothetical body  , relative to which a
system of axes is defined, and with reference to which the law of inertia
is to hold (Inertial system, vide Note 15).
The alternatives with which one is faced are highly unsatisfactory. The
introduction of absolute space gives rise to the oft-discussed
conceptual difficulties which have gnawed at the foundations of Newton's
mechanics. The introduction of the system of reference  
certainly takes the relativity of motions so far into account, that all
systems in uniform motion relative to an  -system are
established as equivalent from the very outset, but we can affirm
with certainty that there is no such thing as a visible
 -system, and that we shall never succeed in arriving at a
final determination of such a system. (It will, at most, be possible, by
progressively taking account of the influences of constellations upon
the solar system and upon one another, to approximate to a system of
co-ordinates, which could play the part of such an inertial system
with a sufficient degree of accuracy.) As a result of this
objection, the founder of the view himself, C. Neumann, admits that it
will always be somewhat unsatisfactory and enigmatical, and that
mechanics, based on this principle, would indeed be a very peculiar
theory.



It therefore seems quite natural that E. Mach (vide
Note 16) should be led to propose that the law of
inertia be so formulated that its relations to the stellar bodies are
directly apparent. "Instead of saying that the direction and speed of a
mass   remains constant in space, we can make use of the expression
that the mean acceleration of the mass   relative to the masses

 ,  ',  '' ... at distances  ,  ',
 '' respectively, is zero or
 
The latter expression is equivalent to the former statement, as soon as
a sufficient number and sufficiently great and extensive masses are
taken into consideration...." This formulation cannot satisfy us. For,
in addition to a certain requisite accuracy, the character of a
"contact" law is lacking, so that its promotion to the rank of a
fundamental law (in place of the law of inertia) is quite out of the
question.



The inner ground of these difficulties is without doubt to be found
in an insufficient connection between fundamental principles and
observation. As a matter of actual fact, we only observe the motions
of bodies relatively to one another, and these are never absolutely
rectilinear nor uniform. Pure inertial motion is thus a conception
deduced by abstraction from a mental experiment—a mere
fiction.



However necessary and fruitful a mental experiment may often be, there
is the ever-present danger that an abstraction which has been carried
unduly far loses sight of the physical contents of its underlying
notions. And so it is in this case. If there is no meaning for our
understanding in talking of the "motion of a body" in space, as long as
there is only this one body present, is there any meaning in
granting the body attributes such as inertial mass, which arise
only from our observation of several bodies, moving
relatively to one another? If not, then we cannot attach to the
conception "inertial mass of a body," an absolute significance, that is,
a meaning which is independent of all other physical conditions, as has

hitherto been done. Such doubts received fresh strength when the special
theory of relativity endowed every form of energy with inertia
(vide Note 17).



The results of the special theory of relativity entirely unhinged our
view of the inertia of matter, for they robbed the theorem concerning
the equality of inertial and gravitational mass of its strict validity.
A body was now to have an inertial mass varying with its
contained internal energy, without its gravitational mass being
altered. But the mass of a body had always been ascertained from its
weight, without any inconsistencies manifesting themselves (vide
Note 18).



A difficulty of such a fundamental character could come to light only
owing to the theorem of the equality of inertial and gravitational mass
not being sufficiently interwoven with the underlying principles of
mechanics, and because, in the foundations of Newtonian mechanics, the
same importance had not been accorded to gravitational phenomena as to
inertial phenomena, which, judged from the standpoint of experience,
must be claimed. Gravitation, as a force acting at a distance, is,
on the contrary, introduced only as a special force for a limited range
of phenomena: and the surprising fact of the equality of inertial and
gravitational mass, valid at all times and in all places, receives no
further attention. One must, therefore, substitute for the law of
inertia a fundamental law which comprises inertial and gravitational
phenomena. This can be brought about by a consistent application of the
principle of the relativity of all motions, as Einstein has recognized.
This is, therefore, the circumstance chosen by Einstein as a nucleus
about which to weave his developments.



The theorem of the equality of inertial and gravitational mass,
which reflects the intimate connection between inertial and

gravitational phenomena, may be illuminated from another point of view,
and thereby discloses its close relationship (vide
page 55) to the general principle of
relativity.



However much the notion of "absolute space" repelled Newton, he
nevertheless believed he had a strong argument, in support of the
existence of absolute space, in the phenomenon of centrifugal forces.
When a body rotates, centrifugal forces make their appearance. Their
presence in a body alone, without any other visible body being
present, enables one to demonstrate the fact that it is in rotation.
Even if the earth were perpetually enveloped in an opaque sheet of
cloud, one would be able to establish its daily rotation about its axis
by means of Foucault's pendulum-experiment. This peculiarity of
rotations led Newton to conclude that absolute motions exist. From the
purely kinematical point of view, however, the rotation of the
earth is not to be distinguished in any way from a translation; in this
case, too, we observe only the relative motions of bodies,
and might just as well imagine that all bodies in the universe revolve
around the earth. E. Mach has, in fact, affirmed that both events are
equivalent, not only kinematically, but also dynamically: it
must, however, then be assumed that the centrifugal forces, which
are observed at the surface of the earth, would also arise, equal
in quantity and similar in their manifestations, from the
gravitational effect of all bodies in their entirety, if these
revolved around the supposedly fixed earth (vide
Note 19).



The justification for this view, which in the first place arises out of
the kinematical standpoint, is, in the main, to be sought in the fact,
derived from experience, that inertial and gravitational mass are equal.
According to the conceptions, which have hitherto prevailed, the

centrifugal forces axe called into play by the inertia of the rotating
body (or rather by the inertia of the separate points of mass, which
continually strive to follow the bent of their inertia, and, therefore,
express the tendency to fly off at a tangent to the path in which they
are constrained to move). The field of centrifugal forces is, therefore,
an inertial field (vide Note 20). The
possibility of regarding it equally well as a gravitational
field—and we do that, as soon as we also assert the
relativity of rotations dynamically: for we must then assume that the
whole of the masses describing paths about the (supposed) fixed body
induce the so-called centrifugal forces by means of their
gravitational action—is founded on the equality of inertial and
gravitational mass, a fact which Eötvös has established with
extraordinary precision by making use of the centrifugal forces of the
rotating earth (vide Note 21). From these
considerations one realizes how a general principle of the relativity of
all motions simultaneously implies a theory of gravitational fields.



From these remarks one inevitably gains the impression that a
construction of mechanics upon an entirely new basis is an absolute
necessity. There is no hope of a satisfactory formulation of the law of
inertia without taking into account the relativity of all
motions, and hence just as little hope of banishing the unwelcome
conception of absolute motion out of mechanics; moreover, the discovery
of the inertia of energy has taught us facts which refuse to fit
into the existing system, and necessitate a revision of the foundations
of mechanics. The condition which must be imposed at the very outset (cf.
page 20) is: Elimination of all actions which are
supposed to take place "at a distance" and of all quantities which are not
capable of direct observation, out of the fundamental laws; i.e.

the setting-up of a differential equation which comprises the motion of
a body under the influence of both inertia and gravity and
symbolically expresses the relativity of all motions. This condition is
completely satisfied by Einstein's theory of gravitation and the general
theory of relativity. The sacrifice, which we have to make in accepting
them, is to renounce the hypothesis, which is certainly deeply rooted,
that all physical events take place in space whose measure-relations
(geometry) are given to us a priori, independently of all physical
knowledge. As we shall see in the following section,
the general theory of relativity leads us, rather, to the view that we may
regard the metrical conditions in the neighbourhood of bodies as being
conditioned by their gravitation. In this way the geometry of the
measuring physicist becomes intimately welded with the other branches of
physics.



If we compress into a short statement what we have so far deduced out of
the fundamental postulates formulated at the beginning, we may say: The
postulate of general relativity demands that the fundamental laws be
independent of the particular choice of the co-ordinates of reference.
But the Euclidean line-element does not preserve its form after any
arbitrary change of the co-ordinates of reference. We have, therefore,
to substitute in its place the general line-element:
 
Whereas, then, the postulate of continuity (cf. page 20)
seemed to render it only advisable not to introduce the narrowing
assumptions of the Euclidean determination of measure, the principle of
general relativity no longer leaves us any choice.



The reason for so emphasizing the latter principle—as, indeed, also

the postulate that only observable quantities are to occur in physical
laws—is not to be sought in any requirement of a merely formal
nature, but rather in an endeavour to invest the principle of causality
with the authority of a law which holds good in the world of actual
physical experience. The postulate of the relativity of all motions
receives its true value only in the light of the theory of knowledge
(Note 22). One must, above all, avoid introducing
into physical laws, side by side with observable quantities, hypotheses
which are purely fictitious in character, as e.g. the space of
Newton's mechanics. Otherwise the principle of causality would not give us
any real information about causes and effects, i.e. the causal relations of
the contents of direct experience; which is, presumably, the aim
of every physical description of natural phenomena.

















§ 5




EINSTEIN'S THEORY OF GRAVITATION



(a) THE FUNDAMENTAL LAW OF MOTION AND THE
PRINCIPLE OF EQUIVALENCE OF THE NEW THEORY




AFTER the foregoing remarks we shall be
able to proceed to a short account of Einstein's theory of gravitation.
Within the limits of the mathematics assumed in this book we shall, of
course, only be able to sketch the outlines so far that the assumptions and
hypotheses characteristic of the theory come into clear view and that their
relation to the two fundamental postulates of the second
section becomes manifest. We start out from the fundamental law of
motion in classical mechanics, the law of inertia. Since even in the law
of inertia all the weaknesses of the old theory come to light, a new
fundamental law of motion becomes an absolute necessity for the new
mechanics. It is thus natural that we should start building up the new
theory from this point. The new law of motion must be a differential
law, which, in the first place, describes the motion of a point-mass
under the influence of both inertia and gravity, and which,
secondly, always preserves the same form, irrespective of the system of
co-ordinates to which it be referred, so that no system of co-ordinates

enjoys a preference to any other. The first condition arises from the
necessity of ascribing the same importance to gravitational phenomena as
to inertial phenomena in the new process of founding mechanics—the
law must, therefore, also contain terms which denote the gravitational
state of the field from point to point; the second condition is derived
from the postulate of the relativity of all motion.



A law of this kind exists in the special theory of relativity in the
equation of motion of a single point, not subject to any external
influence. According to this equation, the path of a point is the
"shortest" or "straightest" line (vide Note
23)—i.e. the "straight line," if the line-element   is
Euclidean. Written as an equation of variation this law is:
 
If the principle of the shortest path, which is to be followed in actual
motions, be elevated in this form to a general differential law
for the motion in a gravitational field too, with due regard to
the principle of the relativity of all motions, the new fundamental law
must run as follows:
 
For only this form of the line-element remains unaltered (invariant) for
arbitrary transformations of the  ,  ,  ,
 . The factors   ...  , which for the present
we leave unexplained, occur in it as something essentially new. Now, the
extraordinarily fruitful idea that occurred to Einstein was this: Since
the new law is to hold for any arbitrary motions whatsoever, thus also
for accelerations, such as we perceive in gravitational fields, we must

make the gravitation field, in which the observed motion takes place,
responsible for the occurrence of these ten factors  .
These ten coefficients   which will, in general, be
functions of the variables   ...  , must, if the new
fundamental law is to be of use, be able to be brought into such
relationship to the gravitational field, in which the motion takes
place, that they are determined by the field, and that the motion
described by equation (1) coincides with the observed
motion. This is actually possible. (The  's are the
gravitational potentials of the new theory, i.e. they take over the part
played by the one gravitational potential in Newton's theory, without,
however, having the special properties, which according to our knowledge
a potential has, in addition.)



Corresponding to the measure-relations of a space-time manifold based
upon the line-element:
 
which is now placed at the foundation of mechanics by virtue of the
relativity of all motions, the remaining physical laws must also be so
formulated that they remain independent of the accidental choice of the
variables. Before we enter into this more closely, the distinguishing
features of the theory of gravitation characterized by equation (1) will
be considered in greater detail.



The postulate of the new theory, that the laws of mechanics are only to
contain statements about the relative motions of bodies, and that, in
particular, the motion of a body under the action of the attraction of
the remaining bodies is to be symbolically described by the formula:
 

is fulfilled in Einstein's theory by a physical hypothesis concerning
the nature of gravitational phenomena, which he calls the
hypothesis or principle (respectively) of
equivalence (vide Note 24). This asserts
the following:



Any change, which an observer perceives in the passing of any event
to be due to a gravitational field, would be perceived by him in exactly
the same way, if the gravitational field were not present, provided that
he—the observer—makes his system of reference move with the
acceleration which was characteristic of the gravitation at his point of
observation.



For, if the variables  ,  ,  ,   in the equation of
motion
 
of a point-mass moving uniformly and rectilinearly (i.e. uninfluenced by
gravity) be subjected to any transformation corresponding to the change
of the  ,  ,  ,   into the co-ordinates  ,
 ,  ,   of a system of reference which has any
accelerated motion whatsoever with regard to the initial system  ,
 ,  ,  ; then, in general, coefficients  , will
occur in the transformed expression for  , and will be functions of
the new variables   ...  , so that the transformed
equation will be:
 
Taking into account the extended region of validity of this equation,
one will be able to regard the   which arise from the
accelerational transformation (vide Note
25) just as well, as due to the action of a gravitational field,
which asserts its existence in effecting just these accelerations.
Gravitational problems thus resolve into the general science of
motion of a relativity-theory of all motions.



By thus accentuating the equivalence of gravitational and accelerational

events, we raise the fundamental fact, that all bodies in the
gravitational field of the earth fall with equal acceleration, to
a fundamental assumption for a new theory of gravitational phenomena.
This fact, in spite of its being reckoned amongst the most certain of
those gathered from experience, has hitherto not been allotted any
position whatsoever in the foundations of mechanics. On the contrary,
the Galilean law of inertia makes an event which had never been actually
observed (the uniform rectilinear motion of a body, which is not subject
to external forces) function as the main-pillar amongst the fundamental
laws of mechanics. This brought about the strange view that inertial and
gravitational phenomena, which are probably not less intimately
connected with one another than electric and magnetic phenomena, have
nothing to do with one another. The phenomenon of inertia is placed at
the base of classical mechanics as the fundamental property of matter,
whereas gravitation is only, as it were, introduced by Newton's law as
one of the many possible forces of nature. The remarkable fact of the
equality of the inertial and gravitational mass of bodies only appears
as an accidental coincidence.



Einstein's principle of equivalence assigns to this fact the rank to
which it is entitled in the theory of motional phenomena. The new
equation of motion (1) is intended to describe the relative motions of
bodies with respect to one another under the influence of both
inertia and gravity. The gravitational and inertial phenomena are
amalgamated in the one principle that the motion take place in
the geodetic line  . Since the element of arc
 

preserves its form after any arbitrary transformation of the variables,
all systems of reference are equally justified as such, i.e.
there is none which is more important than any other.



The most important part of the problem, with which Einstein saw himself
confronted, was the setting-up of differential equations for the
gravitational potentials of the new theory. With the help of these
differential equations, the  's were to be unambiguously
calculated (i.e. as single-valued functions) from the distribution of
the quantities exciting the gravitational field; and the motion (e.g. of
the planets) which was described, according to equation (1) by inserting
these values for the  's, had to agree with the observed
motion, if the theory was to hold true. In setting up these differential
equations for the gravitational potentials   Einstein made
use of hints gathered from Newton's theory, in which the factor which
excites the field in Poisson's equation   for
the Newtonian gravitational potential (viz. the factor represented by
 , the density of mass in this equation) is put proportional to a
differential expression of the second order. This circumstance
prescribes, as it were, the method of building up these equations,
taking for granted that they are to assume a form similar to that of
Poisson's equation.



In conformity with the deepened meaning we have assigned to the mutual
relation between inertia and gravity, as well as to the connection
between the inertia and latent energy of a body, we find that ten
components of the quantity which determines the "energetic" state
at any point of the field, and which was already introduced by the
special theory of relativity as "stress-energy-tensor," duly make
their appearance in place of the density of mass  , in Poisson's
equation.




Concerning the differential expressions of the second order in the
 's which are to correspond to the   of
Poisson's equation, Riemann has shown the following: the
measure-relations of a manifold based on the line-element
 
are in the first place determined by a differential expression of the
fourth degree (the Riemann-Christoffel Tensor), which is independent of
the arbitrary choice of the variables   ...   and from
which all other differential expressions which are likewise independent
of the arbitrary choice of the variables   ...   and
only contain the  's and their derivatives, can be
developed (by means of algebraical and differential operations). This
differential expression leads unambiguously, i.e. in only one possible
way, to ten differential expressions in the  's. And now,
in order to arrive at the required differential equations, Einstein puts
these ten differential expressions proportional to the ten components of
the stress-energy-tensor, regarding the latter ten as the quantities
exciting the field. He inserts the gravitational constant as the
constant of gravitation. These differential equations for the
 's, together with the principle of motion given above,
represent the fundamental laws of the new theory. To the first order
they, in point of fact, lead to those forms of motion, with which Newton's
theory has familiarized us (vide Note 26).
More than this, without requiring the addition of any further hypothesis,
they mathematically account for the only phenomenon in the theory of
planetary motion which could not be explained on the Newtonian theory,
viz. the occurrence of the remainder-term in the expression

for the motion of Mercury's perihelion. Yet we must bear in mind that
there is a certain arbitrariness in these hypotheses just as in that
made for the fundamental law of motion. Only the careful elaboration of
the new theory in all its consequences, and the experimental testing of
it will decide whether the new laws have received their final forms.



Since the formulæ of the new theory are based upon a
space-time-manifold, the line-element of which has the general form
 
all other physical laws, in order to bring the general theory of
relativity to its logical conclusion, must receive (see p. 46) a form
which, in agreement with the new measure-conditions, must be independent
of the arbitrary choice of the four variables  ,  ,
 ,  .



Mathematics has already performed the preliminary work for the solution
of this problem in the calculus of absolute differentials; Einstein
has elaborated them for his particular purposes (in his essay "Concerning
the formal foundations of the general theory of relativity"[12]); Gauss
invented the calculus of absolute differentials in order to study those
properties of a surface (in the theory of surfaces) which are not
affected by the position of the surface in space nor by inelastic
continuous deformations of the surface (deformations without tearing),
so that the value of the line-element does not alter at any point of the
surface.






[12]"Über die formalen Grundlagen der allgemeinen
Relativitäts-theorie," Sitz. Ber. d. Kgl. Preuss. Akad. d. Wiss.,
XLI., 1916, S. 1080.







As such properties depend upon the inner measure-relations of the
surface only, one avoids referring, in the theory of surfaces, to the
usual system of co-ordinates, i.e. one avoids reference to points which
do not themselves lie on the surface. Instead of this, every point in
the surface is fixed, by covering the surface with a net-work,
consisting of two intersecting arbitrary systems of curves, in which
each curve is characterized by a parameter; every point of the surface
is then unambiguously, i.e. singly, defined by the two parameters of the
two curves (one from each system) which pass through it. According to
this view of surfaces, a cylindrical envelope and a plane, for instance,
are not to be regarded as different configurations: for each can be
unfolded upon the other without stretching, and accordingly the same
planimetry holds for both—a criterion that the inner
measure-relations of these two manifolds are the same (vide
Note 27). The general theory of relativity is based
upon the same view; but now not as applied to the two-dimensional
manifold of surfaces, but with respect to the four-dimensional
space-time manifold. As the four space-time variables are devoid of all
physical meaning, and are only to be regarded as four parameters, it will
be natural to choose a representation of the physical laws, which provides
us with differential laws which are independent of the chance choice of the
 ,  ,  ,  ; this what is done by the
calculus of absolute differentials. The results of the preceding
paragraphs, the far-reaching consequences of which can be fully
recognized only by a detailed study of the mathematical developments
involved, may be summarized as follows:



A mechanics of the relative motions of bodies, which is in harmony with
the two fundamental postulates of continuity and relativity, can be

built up only on a fundamental law of motion that preserves its form
independently of the kind of motion the system is undergoing. An
available law of this kind is given if we raise the law of motion along
a geodetic line, which, in the special theory of relativity, holds only
for a body moving under no forces, to the rank of a general differential
law of the motion in the gravitational field, too. In this general law,
we must, it is true, give the line-element of the orbit of the moving
body the general form:
 
at which we arrive in the second section, using as
our basis the two fundamental postulates. The new functions
  that now occur may be interpreted as the potentials of
the gravitational field, if we take our stand on the hypothesis of
equivalence. To calculate the quantities from the factors determining
the gravitational field, namely, matter and energy, it immediately
suggests itself to us to assume a system of differential equations of
the second order, that are built up analogously to Poisson's
differential equation for the Newtonian gravitational potential. These
differential equations, together with the fundamental law of motion,
represent the fundamental equations of the new mechanics and the theory
of gravitation.



Since the new theory uses the generalized curvilinear co-ordinates
 ,  ,  ,  , and not the Cartesian
co-ordinates of Euclidean geometry, all the other physical laws must
also receive a general form that is independent of the special choice of
co-ordinates. The mathematical instrument for remoulding these formulæ
is given by the general calculus of differentials.



This theory, which is built up from the most general assumptions,

leads, for a first approximation, to Newton's laws of motion. Wherever
deviations from the theory hitherto accepted reveal themselves, we have
possibilities of testing the new theory experimentally. Before we turn
to this question, let us look back, and become clear as to the attitude
which the general theory of relativity compels us to adopt towards the
various questions of principle we have touched upon in the course of
this essay.









(b) RETROSPECT




1. The conceptions "inertial" and "gravitational" (heavy) mass no longer
have the absolute meaning which was assigned to them in Newton's
mechanics. The "mass" of a body depends, on the contrary, exclusively
upon the presence and relative position of the remaining bodies in the
universe. The equality of inertial and gravitational mass is put at the
head of the theory as a rigorously valid principle. The hypothesis of
equivalence herein supplements the deduction of the special theory of
relativity, that all energy possesses inertia, by investing all energy
with a corresponding gravitation. It becomes possible—on the basis
(be it said) of certain special assumptions into which we cannot enter
here—to regard rotations unrestrictedly as relative motions too,
so that the centrifugal field around a rotating body can be interpreted
as a gravitational field, produced by the revolution of all the masses
in the universe about the non-rotating body in question. In this manner
mechanics becomes a perfectly general theory of relative motions. As our
statements are concerned only with observations of relative motions, the

new mechanics fulfils the postulate that in physical laws observable
things only are to be brought into causal connection with one another.
It also fulfils the postulate of continuity; since the new fundamental
laws of mechanics are differential laws, which contain only the
line-element   and no finite distances between bodies.



2. The principle of the constancy of the velocity of light in
vacuo, which was of particular importance in the special theory of
relativity, is no longer valid in the general theory of relativity. It
preserves its validity only in regions in which the gravitational
potentials are constant, finite portions of which we can never meet with
in reality. The gravitational field upon the earth's surface is
certainly so far constant that the velocity of light, within the limits
of accuracy of our measurements, had to appear to be a universal
constant in the results of Michelson's experiments. In a gravitational
field, however, in which the gravitational potentials vary from place to
place, the velocity of light is not constant; the geodetic lines, along
which light propagates itself, will thus in general be curved. The proof
of the curvature of a ray of light, which passes by in close proximity
to the sun, offers us one of the most important possibilities of
confirming the new theory.



3. The greatest change has been brought about by the general theory of
relativity in our conceptions of space and time.[13]






[13]This aspect of the problem has been treated with particular
clearness and detail in the book "Raum und Zeit in der gegenwärtigen
Physik," by Moritz Schlick, published by Jul. Springer, Berlin. The
Clarendon Press has published an English rendering under the title:
"Space and Time in Contemporary Physics."




According to Riemann the expression for the line-element, viz.
 

determines, in our case, the measure-relations of the continuous
space-time manifold; and according to Einstein the coefficients
  of the line-element   have, in the general theory of
relativity, the significance of gravitational potentials.
Quantities, which hitherto had only a purely geometrical import, for the
first time became animated with physical meaning. It seems quite natural
that gravitation should herein play the fundamental part, viz. that of
predominating over the measure-laws of space and time. For there is no
physical event in which it does not co-operate, inasmuch as it rules
wherever matter and energy come into play. Moreover, it is the only
force, according to our present knowledge, which expresses itself quite
independently of the physical and chemical constitution of bodies. It
therefore without doubt occupies a unique position, in its outstanding
importance for the construction of a physical picture of the world.



According to Einstein's theory, then, gravitation is the "inner ground
of the metric relations of space and time" in Riemann's sense (vide
the final paragraph of Riemann's essay "On the hypotheses which lie at the
bases of geometry" quoted on p. 29). If we uphold
the view that the space-time manifold is continuously connected, its
measure-relations are not then already contained in its definition as
being a continuous manifold of the dimensions "four." These have, on the
contrary, yet to be gathered from experience. And it is, according to
Riemann, the task of the physicist finally to seek the inner ground of
these measure-relations in "binding forces which act upon it." Einstein
has discovered in his theory of gravitation a solution to this problem,
which was presumably first put forward in such clear terms by Riemann.

At the same time he gives an answer to the question of the true geometry
of physical space, a question which has exercised physicists for the
last century,—but an answer, it is true, of a sort quite different
from that which had been expected.



The alternative, Euclidean or non-Euclidean geometry, is not decided in
favour of either one or the other; but rather space, as a physical thing
with given geometrical properties, is banished out of physical laws
altogether: just as ether was eliminated out of the laws of
electrodynamics by the Lorentz-Einstein special theory of relativity.
This, too, is a further step in the sense of the postulate that only
observable things are to have a place in physical laws. The inner ground
of metric relations of the space-time manifold, in which all physical
events take place, lies, according to Einstein's view, in the
gravitational conditions. Owing to the continual motion of bodies
relatively to one another, these gravitational conditions are
continually altering; and, therefore, one cannot speak of an invariable
given geometry of measure or distance—whether Euclidean or
non-Euclidean. As the laws of physics preserve their form in the general
theory of relativity, independent of how the four variables   ...
  may chance to be chosen, the latter have no absolute
physical meaning. Accordingly  ,  ,  , for
instance, will not in general denote three distances in space which can
be measured with a metre rule, nor will   denote a moment of
time which can be ascertained by means of a clock. The four variables
have only the character of numbers, parameters, and do not immediately
allow of an objective interpretation. Time and space have, therefore,
not the meaning of real physical things in the description of the events
of physical nature.




And yet it seems as if the new theory may even be able to give a
definite answer in favour of one or other of the above alternatives, if,
namely, we postulate their validity for the world as a whole. The
application of the formulæ of the new theory to the world as a whole at
first led to the same difficulties as those revealed in classical
mechanics. Boundary conditions for what is infinitely distant could not
be set up entirely satisfactorily and at the same time satisfy the
condition of general relativity. Yet Einstein[14]
succeeded in extending the differential equations for the gravitational
potentials in such a way that it became possible to apply his theory of
gravitation to the universe. The difficulties that arose for the
boundary conditions at infinity here vanished, for an extraordinarily
interesting reason. For it was shown that in these new formulæ a space
that is filled uniformly with matter which is at rest would, to a
first approximation, be built up like an, indeed, unbounded, but
finitely closed space, so that boundary conditions would not
appear at all for infinity. Even if the assumptions that would lead to
this result are not fulfilled in the world, yet it must be remembered
that the velocities of matter as ascertained in the case of the stars
are extraordinarily small compared with the velocity of light which we
now take as our unit. Nor does the distribution of the matter so far
show, in the main, irregularities sufficient to place Einstein's view of
a stationary, uniformly-filled world quite out of the realm of possible
truth.






[14]"Kosmologische Betrachtungen zur allgemeinen Relativitäts-theorie"
Sitz. Ber. d. Preuss. Akad. der Wiss., 1917, p. 142.




Thus this deduction of the theory would answer our above alternative in
this sense: the geometry that we must use as our basis of spatial

happening is, indeed, neither Euclidean nor non-Euclidean, but, as
stated above, conditioned by the gravitational states from place to
place. But a world built up according to the simplest scheme would in
the new theory behave on the whole like a finite closed manifold, that
is, as if it were non-Euclidean. Even if this result is only of
theoretical importance for the present, since the stellar system that we
see around us does not fulfil Einstein's assumptions—in
particular, the scarcely-to-be-doubted flattening of the Milky Way is
not compatible with these simple assumptions—and since we have at
present no knowledge of the stellar systems outside the Milky Way, yet
this aspect of the theory opens up undreamed-of perspectives for our
view of the world as a whole.



4. The gravitational theory, which emerges out of the general theory of
relativity, is, in contradistinction to the Newtonian theory, built up,
not upon an elementary law of the gravitational forces, but upon
an elementary law of the motion of a body in the gravitational
field. Consequently, the expressions which would be
interpreted as gravitational forces in the new theory play only a
minor part in the building-up of the theory (as indeed the conception of
force in mechanics altogether is to be regarded as only an auxiliary or
derived conception, if we regard it as the object of mechanics to give
a flawless description of the motions occurring in physical
events).



Nor does Einstein's theory endeavour to explain the nature of
gravitation; it does not seek to give a mechanical model, which would
symbolize the gravitational effect of two masses upon one another. This
is what the various theories involving ether-impulses attempted to do,
by freely using hypothetical quantities which had never been actually
observed, such as ether-atoms. It is very doubtful whether such

endeavours will ever lead to a satisfactory theory of gravitation. For,
the difficulties of Newton's mechanics are not contained only in the
fact that it formulates the law of gravitation as a law of forces acting
at a distance. Two much more serious points are: first, that the close
relationship existing between inertial and gravitational phenomena
receives no recognition whatsoever, although Newton was already aware of
the fact that inertial and gravitational mass are equal; and second,
that Newton's mechanics does not present us with a theory of the
relative motions of bodies, although we only observe relative motions of
bodies with respect to one another. Re-moulding Newton's law of
gravitational force, in order to make the attraction of matter more
feasible, would therefore not have helped us finally to a satisfactory
theory of the phenomena of motion (vide
Note 28).



What distinguishes the Newtonian theory, above all, is the extraordinary
simplicity of its mathematical form. Classical mechanics, which is built
up on Newton's initial construction, will, for this reason, never lose
its importance as an excellent mathematical theory for arithmetically
following the observed phenomena of motion.



Einstein's theory, on the other hand, as far as the uniformity of its
conceptual foundations is concerned, satisfies all the conditions for a
physical theory. The fact that (by abandoning the Euclidean measure of
distance) it cuts its connection with the familiar representation by
means of Cartesian co-ordinates, will not be felt to be a disturbing
factor, as soon as the analytical appliances, which have been called
into use as a help, have been more generally adopted. This mathematical
elaboration of the theory at the same time gives to the astronomer the
task of testing the theory experimentally in those phenomena in which
measurable deviations from the results of the classical theory arise.

















§ 6




THE VERIFICATION OF THE NEW THEORY BY ACTUAL EXPERIENCE



AS far as can be seen at present, there are
three possible experiments for verifying Einstein's theory of
gravitation; all three can be performed only by the agency of astronomy.
One of them—arising from the deviation of the motion of a material
point in the gravitational field according to Einstein's theory, as
compared with that required by Newton's theory—has already decided
in favour of the new theory: not less so one of the other two that arise
through a combination of electromagnetic and gravitational phenomena.



Since the sun far exceeds all other bodies of the solar system in mass,
the motion of each particular planet is primarily conditioned by the
gravitational field of the sun. Under its action the planet describes,
according to Newton's theory, an ellipse (Kepler's law), the major axis
of which—defined by connecting the point of its path nearest the
sun (perihelion) with the farthest point (aphelion)—is at rest,
relative to the stellar system. Upon this elliptic motion of a planet
there are superimposed more or less considerable influences
(disturbances) due to the remaining planets, which do not, however,
appreciably alter the elliptic form; these influences partly only call

forth periodical fluctuations in the defining elements of the initial
ellipse (i.e. major axis, eccentricity, etc.), partly cause a continual
increase or decrease of the latter. In this second kind of disturbance
are also to be classed the slow rotation of the major axis, and
consequently also of the corresponding perihelion, relative to the
stellar system; which has been observed in the case of all planets. For
all the larger planets, the observed motions of the perihelion
agree with those calculated from the disturbing effects (except
for small deviations which have not been definitely established, as in
the case of Mars); on the other hand, in the case of Mercury the
calculations give a value which is too small by 43" per 100 years.
Hypotheses of the most diverse description have been evolved to explain
this difference; but all of them are unsatisfactory. They oblige one to
resort to still unknown masses in the solar system: and, as all the
searches for masses large enough to explain this anomalous behaviour of
Mercury prove fruitless, one is compelled to make assumptions about the
distribution of these hypothetical masses, in order to excuse their
invisibility. In view of these circumstances, there is no shade
of probability in these hypotheses.



According to Einstein's theory, a planet, at the distance of Mercury for
instance, moves, under the action of the sun's attraction, along the
"straightest path," according to the equation:
 
The  's can be derived from the differential equations,
which were given for them above, and which result from the assumed
sole presence of the sun and the planet being regarded as a mass
concentrated at a point. Einstein's developments give the

ellipse of Kepler too as a first approximation for the path of the
planet: at a higher degree of approximation, however, it is found that
the radius vector from the sun to the planet, between two consecutive
passages through perihelion and aphelion, sweeps out an angle, which is
about 0.05" greater than 180°; so that, for each complete revolution of
the planet in its path, the major axis of the path—i.e. the
straight line connecting perihelion with aphelion—turns through
about 0.1" in the sense in which the path is described. Therefore, in
100 years—Mercury completes a revolution in 88 days—the
major axis will have turned through 43". The new theory, therefore,
actually explains the hitherto inexplicable amount, 43 seconds per 100
years, in the motion of Mercury's perihelion, merely from the effect of
the sun's gravitation. (The deviations due to such disturbances would
only differ very inappreciably from the values obtained by Newton's
theory in the case of the remaining planets.) The only arbitrary
constant which enters into these calculations is the gravitational
constant which figures in the differential equations for the
gravitational potentials   as has already been mentioned on
page 50. This achievement of the new theory can
scarcely be estimated too highly.



The reason that a measurable deviation from the results according to
Newton's theory occurs in the case of Mercury, the planet nearest to the
sun, but not in the case of the planets more distant from the sun, is
that this deviation decreases rapidly with increasing distance of the
planet from the sun, so that it already becomes imperceptible at the
distance of the earth. In the case of Venus, the eccentricity of the
path is, unfortunately, so small, that it scarcely differs from a

circle: and the position of the perihelion can, therefore, only be
determined with great uncertainty.



Of the other two possibilities of verifying the theory, one arises from
the influence of gravitation upon the time an event takes to pass. How
such an influence can come about, will be evident from the following
example: According to the new theory, an observer cannot immediately
distinguish whether a change, which he observes during the passage of a
certain event, is due to a gravitational field or to a corresponding
acceleration of his place of observation (his system of reference). Let
us assume ah invariable gravitational field, denoted by parallel lines
of force in the negative direction of the  -axis, and having a
constant value   for the acceleration with which all bodies in
the field fall (i.e. characterized by conditions which approximately
exist on the surface of the earth). According to Einstein's theory, any
event will take place in this field in just the same way as it appears
to occur when referred to a co-ordinate system which has an acceleration
  in the positive direction of the  -axis. Now if a ray of
light, the time of oscillation of which is   travels from a
point  —which is to be conveniently supposed at rest
relatively to the corresponding co-ordinate system at the moment of
departure of the ray—in the direction of the  -axis for a
distance   to a point  , then an observer at   will, owing
to his own acceleration,  , have attained a velocity   at the instant the ray of light reaches him (c
denotes the velocity of light). According to the usual Doppler
Principle, he will assign a time of oscillation   to the ray of light as a first
approximation, instead of  . If we transfer the same event to
the equivalent gravitational field, this result assumes the following
form: The time of oscillation   of a ray of light

at a place  , the gravitational potential of which differs from that
of a place   by the amount  , is connected with the time
of oscillation there observed by the relation:
 
according to the principle of equivalence of Einstein's theory of
gravitation.



This special case shows how the duration of an event is to be understood
as being dependent upon the gravitational condition.



Moreover, one can regard every vibrating system (which emits a spectral
line) as a clock, the motion of which, according to the
investigation made just above, depends upon the gravitational potentials
of the place where it is stationed. This same "clock" will have a
different time of oscillation at another place in the field according to
the gravitational potential, i.e. it will go at a different rate.
Consequently, a particular line in the spectrum of the light which comes
from the sun, e.g. an Fe-line (iron), must appear to be shifted
in comparison with the corresponding line as produced by a source of
light (arc-lamp) on the earth; the gravitational potential at the
surface of the sun has, corresponding to the latter's great mass, a
different value from that at the surface of the earth, and a definite
time of oscillation (colour) is characterized in the spectrum by a
definite position (Fraunhofer line). It has not yet been possible to
observe this effect, which amounts to about 0.008 [15]
for a wave-length of 400  with certainty.






[15]  = Ångström unit = 10-8 cm.




For the conditions of emission of the light from the sun's surface have
not yet been sufficiently investigated, and the systematic errors in the

wave-lengths in the light from the source used for comparison on the
earth, the arc-lamp, are not yet sufficiently known to allow the
negative results of observation hitherto obtained to be regarded as
giving binding decisions. This is the more true inasmuch as in the case
of the fixed stars there are, doubtless, signs of the presence of a
gravitational shift of the spectral lines (vide the closing
essay The Third Test of this book).
It is a particularly important task of astronomy to
establish this effect with certainty, for this gravitational
displacement of the spectral lines is a direct consequence of the
hypothesis of equivalence, and does not assume the other hypotheses of
the theory such as, for example, the differential equations of the
gravitational field.



The third and particularly important inference from Einstein's
theory is the dependence of the velocity of light upon the
gravitational potential, and the resultant curvature (based upon
Huygens' principle) of a ray of light in passing through a gravitational
field. The theory asserts that a ray of light, coming e.g. from a fixed
star, and which passes in close proximity to the sun, has a curved
path. As a consequence of this curvature, the star must appear
displaced from its true position in the heavens by an amount which
attains the value 1.7" at the edge of the sun's disc, and decreases in
proportion to the distance from the centre of the sun. But since a ray
of light which comes from a fixed star and passes by the sun can be
caught only when the light of the sun, which overpowers all else by its
brilliancy, is intercepted before its entrance into our atmosphere, only
the rare moments of a total eclipse come into account for this
observation and for the solution of the problem. The solar eclipse of
29th May, 1919, during which photographs were taken at two

widely-separated stations, for the purpose of this test, has, as far as
the results of measurement allow us to pass definite judgment, decided in
favour of the general theory of relativity.[16]



The experimental verification of Einstein's theory of gravitation has
thus not reached completion. But if, in spite of this, the theory can,
even at this early stage, justly claim general attention, the reason is
to be found in the unusual unity and logical structure of the ideas
underlying it. In truth, it solves, at one stroke, all the riddles,
concerning the motions of bodies, which have presented themselves since
the time of Newton, as the result of the conventional view about the
meaning of space and time in the physical description of natural
phenomena.





[16]The results were made public at the meeting of the Royal
Society on the 6th Nov., 1919.—H. L. B.



















APPENDIX



Note 1 (p. 4). So long as the universal
significance of the velocity of light remained unknown, two conjectures
were possible in the question as to whether, under certain
circumstances, the motion of the source of light would make itself
observable in the velocity of propagation of light. It might be surmised
that the velocity of the source simply added itself to that velocity of
light which is characteristic for the propagation of the light
from a source at rest. Or, it might be conceived that the motion of the
source has no influence at all on the velocity of the light emitted by
it. In the second case it was imagined that the source of light only
excites the periodically changing states of the luminiferous ether,
which is at rest, that is, which does not share in the motion of the
matter (source of light), and that these states then propagate
themselves with a velocity that is characteristic of the ether,
and with a velocity that makes these states perceptible to us as light
waves. This view had finally apparently won the day. It was the advent
of the special theory of relativity and the quantum hypothesis that made
this view impossible. For the special theory of relativity, in robbing
the assertion: "the ether is at rest" of its significance, since we may
arbitrarily define any system as being at rest in the ether, as far as
uniform translations are concerned, and in depriving the luminiferous

ether of its existence, deprived light-waves of their carrying or
transmitting medium. The quantum hypothesis, in raising light-quanta to
the rank of self-supporting individuals, deprived the velocity of
light of its character as a constant that is characteristic of the
ether. Thus, our view of light-quanta again leads to a kind of
emission theory of light. According to classical mechanics it would have
been typical of a theory of emission for the velocity of the source in
motion to have added itself to the velocity of the light from the source
at rest. We thus revert to the conjecture which we quoted first above.
Now, such a superposition of velocities would necessarily cause quite
remarkable phenomena in the case of spectroscopic binary stars (de
Sitter, "Phys. Zeitschrift," 14, 429). For if two stars move in
circular Kepler orbits around each other, and if our line of sight lies
in the common plane of the orbits, then we should necessarily perceive
the following: if   is the time of revolution of the system,
  the orbital velocity of the one (bright) component,  
the distance of the whole system from the earth, and, finally,  ,
the velocity in vacuo of the light from the source which is at rest,
then the velocity of light at the epoch of greatest positive velocity in
the direction of vision is  , and   in the other
direction, respectively. Consequently the time-interval between two such
successive positions would have the values   and  
alternately, for the observer on the earth, as a simple calculation
shows. Since, on account of the gigantic distances between the fixed
stars, the member   may become very great,
indeed, greater than  , we should be able to observe definite

anomalies in the case of the spectroscopic binaries. For the time
intervals between two such successive epochs in the orbit should be able
to contract to nil, indeed, even become negative, and we should not be
able to interpret the measured Doppler effects by means of motions in
the Kepler ellipses. In reality, however, these anomalies have never
manifested themselves. Observation of these very sensitive subjects of
test (spectroscopic binaries) teaches us that the motion of the source
of light does not make itself remarked in the propagation of the light.
This renders our first view likewise untenable. The special principle of
relativity, alone in postulating the constancy of the velocity of light,
and in putting forward a new addition theorem of velocities, has led us
to an attitude in this question that is free from inner contradictions
and compatible with experience. (Cf. Note 2.)



Note 2 (p. 5). There are essentially two
fundamental optical experiments on which our view of the distinctive
significance of the velocity of light in physical nature is founded:
Fizeau's experiment concerning the velocity of light in flowing water,
and the Michelson-Morley experiment. Aberration, on the other hand, has
nothing to do directly with the question whether it is possible to prove
by means of optical experiments in the laboratory a motion of the earth
relative to the ether. The aberration in the case of stars states merely
that the motion of the earth relatively to the star under
consideration changes periodically in the course of a year. If,
however, we hold the view that an all-pervading ether is the carrier for
the propagation of the light, the phenomenon of aberration may be
satisfactorily explained only if we assume that this ether does not
participate in the motion of the earth.



Fizeau's experiment was designed to decide finally whether moving

matter influences the ether and to determine the value of the velocity
of light in moving matter with respect to the observer. Michelson and
Morley repeated the experiment in the following improved form. A beam of
light from a source on the earth is sent through a  -shaped tube,
through which water flows, in the direction of both limbs. After each
part of the beam has traversed the flowing water, the one in the
direction of the current, the other contrary to it, the two beams, are
made to interfere. The light and the water move in the same direction in
the one limb, and oppositely in the other.







fig01

Fig. 1.





 Now, there immediately appear to be two possibilities.
Either the water that flows with a velocity   with respect to the
walls of the tube drags along the carrier that effects the transmission
of the light, namely the ether; in this case, the velocity of the light
is   in the one limb, and   in the
other, for, on account of the coefficient of refraction   of the
water,   is the velocity of light in resting
water. Or, the motion of the water has no influence at all on the

ether which transmits light and which permeates the water. In this case
the velocity of light is   in both limbs. According, as
the one or the other of these two assumptions is valid, the interference
fringes would have to become displaced or remain at rest when the
direction of the current is reversed. The experiment decided in favour
of neither of these possibilities. The interference fringes did,
indeed, become shifted, not to the expected amount, however, but only to
an amount that would result if the ether assumes the velocity   in water, and not the full value
 . This value of the convection of the ether is called Fresnel's
convection coefficient. Yet this term is capable of being
misunderstood inasmuch as in the electrodynamics developed by Lorentz,
the result of Fizeau's experiment speaks in favour of an ether that is
absolutely at rest, and the so-called convection coefficient is
only a consequence of the structure of matter, in particular of the
interaction between electrons and matter, a question into which we
cannot enter here. At any rate, at the time preceding the
Michelson-Morley experiment aberration, as well as Fizeau's experiment,
appeared to speak in favour of an ether that was absolutely at rest.



Now, the Michelson-Morley experiment was to establish the existence of
the current of ether (ether "wind") through which the earth continually
moves, since the ether is supposed not to participate in the motion of
the earth. The scheme of the experiment is as on p.
74.



A ray of light, starting out from  , traverses the course
 : here   and  , are
two mirrors, on to which the ray falls perpendicularly;   is a glass

plate that reflects one half of the light and allows the remainder to
pass through;   is the telescope of the observer. Another ray of
light traverses the course  . Let  . Further, let  , be in the direction of the
earth's motion. Our assumption is that the ether does not share in the
earth's motion. Let the velocity of the earth be  .
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Fig. 2.






Then the velocity of the light relative to the instrument (earth) is as
follows in the directions specified:
 
 
Consequently, the course   is traversed in the time
 

and the course   in the time
 
The difference of these two times is
 
If we exchange the positions of  , and  , by turning
the whole apparatus through 90°, then
 



If we make these tyro rays of light interfere at   then, when the
apparatus is turned through 90°, the interference fringes should become
shifted. The amount of this displacement may easily be calculated. If we
denote by   the vibration frequency of the light-ray used in the
experiment, then   is the corresponding wave-length.
Thus, expressed in fractions of the interval between the fringes, the
expected displacement becomes equal to
 
By causing the light to be reflected many times   was magnified to
such an extent that   became of the order  .
If, for example,  ,
  = the wavelength of sodium light,
then  . On the other hand
  is of the order   that is,

 . The expected displacement of the fringes would thus have to
be about 0·56 of the breadth of a fringe. Actually, an amount of the
order 0·02 of the breadth of a fringe was observed. Thus, the ether
wind did not make itself remarked optically in the motion of the earth.
By carrying out the experiment at different times of the year the
possible objection that the motion of translation of the entire solar
system might have counterbalanced the motion of the earth in her orbit
was removed.



The Michelson-Morley experiment has shown conclusively that there is no
physical sense in talking of absolute rest or of a translation relative
to absolute space, since all systems that move rectilinearly and
uniformly with respect to one another are of equal value for describing
natural phenomena. It is thus a matter of convention which system we are
to regard as at rest and which as being in motion. We may assign the
same value to the velocity of light in all systems. A detailed theory of
these fundamental experiments may be found in all comprehensive accounts
of the special theory of relativity. We here merely mention the original
paper by A. Einstein (Annalen der Physik, Bd. 17, 1905, p. 891),
and the booklet, "Einführung in die Relativitätstheorie," by Dr. W.
Block, out of the series "Aus Natur und Geisteswelt," Teubner, 1918.



Note 3 (p. 9). Abolishing the transformations of
Newton's principle of relativity and replacing them by the so-called
Lorentz-Einstein transformations signified a step of extraordinarily
far-reaching consequence. It was justified in that the new theory of
relativity which followed as a result of it, confirmed, without
difficulty, the results of all the fundamental experiments of optics and
electrodynamics. Concerning the Michelson-Morley experiment,

Lorentz, to account for its negative result within the realm of
electrodynamics, had been compelled to set up the hypothesis that the
dimensions of all bodies contract in the direction of their motion. But
Einstein now showed that if we define the conception of simultaneity
rigorously, taking into account the postulate of the constancy of the
velocity of light, the Lorentz-transformations, which had been found
empirically, followed necessarily as those equations of transformation
that must hold between the co-ordinates of two systems moving uniformly
and rectilinearly with respect to each other. And without the help of
any further hypothesis there appears as a direct consequence of this
transformation just that contraction of lengths which Lorentz had
adduced to explain the result of the Michelson-Morley experiment. This
contraction of a length   in the direction of motion of an object to
the value   is, however, in the new
theory the expression of the general fact that the dimensions of a body
have only a relative meaning, that is, that their values depend on the
state of motion of the observer, which determines the dimensions of the
body in question. This holds for the extension of bodies in time as well
as in space. From the point of view of the new principle of relativity
the negative result of the Michelson-Morley experiment was
self-explained. But what was the position with regard to the other
fundamental facts of optics and electrodynamics? The result of Fizeau's
experiment concerning the velocity of light in flowing water became a
direct test of the kinematics arising out of the new formulæ. According
to the Lorentz transformation the two velocities,   and   with
which, for example, two locomotives approach each other, do not merely

become added, so that   would be the relative velocity of each
with respect to the other, but rather each engine-driver will find as
the velocity with which he passes the other driver, the value
 
according to the new formulæ. This is the addition theorem of
velocities according to the new theory. It gives us immediately the
amount observed in Fizeau's experiment for the velocity of light in
flowing water. Aberration and the Doppler effect follow just as readily
to the correct amount. A detailed discussion of these questions is to be
found in every account of the "special" theory of relativity (cf. the
references given in Note 2).



Note 4 (p. 12). Ph. Frank and H. Rothe, Ann.
d. Phys., 4 Folge, Bd. 34, p. 825.



The assumptions for the general equations of transformation by which two
systems   and  ' that move uniformly and
rectilinearly with the velocity q with respect to each other sure
connected are as follows:—



1. The equations of transformation form a linear homogeneous group in
the variable parameter  . This means that the successive application
of two equations of transformation, of which the one refers the system
  to the system  ', and the second  '
to  '' (  is to have the
constant velocity   with respect to  ', and  '
the constant velocity  ' with respect to  '')
again leads to an equation of transformation of the same form as that of
the initial equations. The parameter  '' that occurs in
the new equation depends in a definite way on  ' and  .



2. The contractions of the lengths depend only on the value of the

parameter  . We must, of course, from the very outset reckon with the
possibility that the length of a rod measured in the system that is at
rest comes out differently when measured in the moving system. Now,
condition 2 requires that if contractions occur (that is, changes of
length in these various methods of determination) values are to depend
only on the magnitude of the velocity of both systems and not on
the direction of their motion in space. Thus this postulate endows space
with the property of isotropy, and is in fair correspondence with the
postulate of section 3a, which states
that it must be possible to compare each line-element with every other in
length independently of its position in space, and its direction.



An essential feature is that the constancy of the velocity of light is
not demanded in either of the postulates 1 and 2. Rather, the
distinguishing property of a definite velocity in virtue of which
it preserves its value in all systems that emerge out of one
another through such transformations is a direct corollary to these two
general postulates, and the result of the Michelson-Morley experiment
merely determines the value of this special velocity which could, of
course, be found only from observation.



Note 5 (p. 15). Einstein has shown in a simple
example how, on the basis of the formulæ of the special theory of
relativity, a point-mass loses inertial mass when it radiates out
energy.



We assume that a point-mass emits a light-wave of energy
  in a certain direction, and a light-wave of the same
energy   in the opposite direction. Then, in view of the
symmetry of the process of emission with respect to the system of
reference of the co-ordinates  ,  ,  ,   originally
chosen, the point-mass remains at rest. Let the total energy

of the point-mass be   referred to this system, but  
referred to a second system which we suppose moving with the uniform
velocity   with respect to the first. We shall apply the principle
of energy to this process. If   and   are the frequency and
amplitude of the light-wave in the initial system,  ',  ',
 ',  ',  ',  ' the frequency, amplitude, and
co-ordinates in the second (the moving) system, further,   the
angle between the wave-normals and the line connecting the point-mass
with the observer, then Doppler's principle gives for the frequency of
the light-wave in the moving system:
 
The formulæ of the special theory of relativity give us, correspondingly,
for the amplitude in the moving system
 
According to Maxwell's theory the energy of the light-wave per unit
volume is  . We now wish to calculate the
corresponding energy-density also with respect to the moving system. We
must here take into account that, in consequence of the contraction of
the lengths according to the Lorentz-Einstein transformation formulæ,
the volume   of a sphere in the resting system becomes transformed
into that of am ellipsoid as measured from the moving system  ; indeed, this volume of the ellipsoid is

 
Hence the energy-densities in the accented and unaccented system are
in the ratio:
 
If we now designate the energy-content of the point-mass after
the emission by  , and the corresponding quantity referred to
the moving system by  , then we have:
 
whereas
 
From this we get directly that
 
What does this equation assert?



  and   are the energy-values of the same point-mass, in the
first place referred to a system with respect to which the point-mass
moves, and in the second related to a system in which the point-mass

is at rest. Hence the difference  , except for an additive
constant, must be equal to the kinetic energy of the point-mass
referred to the moving system. Thus, we may write
 
wherein   denotes a constant which does not alter during the
light-emission of the point-mass, since, owing to the symmetry of the
process, the point-mass remains at rest with respect to the initial
system. So we arrive at the relation:
 
In words this equation states that owing to the point-mass emitting the
energy   as light, its kinetic energy referred to a moving system
sinks from the value   to the value  , corresponding to a
loss in inertial mass of the amount  . For, according
to classical mechanics, the expression   in
which   is the inertial mass of the observed body, is a measure of
the kinetic energy of this body referred to a system with respect to
which it moves with the velocity  . Thus   must be
taken as standing for the inertial mass of an amount of energy  .



Note 6 (p. 29). The facts that every pair
of points (point-pair) in space have the same magnitude-relation (viz. the
same expression for the mutual distance between them) and that with
the aid of this relation, every point-pair can be compared with every
other, constitute the characteristic feature which distinguishes space

from the remaining continuous manifolds which are known to us. We
measure the mutual distance between two points on the floor of a room,
and the mutual distance between two points which he vertically above one
another on the wall, with the same measuring-scale, which we thus apply
in any direction at pleasure. This enables us to "compare" the mutual
distance of a point-pair on the floor with the mutual distance of any
other pair of points on the wall.



In the system of tones, on the contrary, quite different conditions
prevail. The system of tones represents a manifold of two dimensions, if
one distinguishes every tone from the remaining tones by its pitch and
its intensity. It is, however, not possible to compare the "distance"
between two tones of the same pitch but different
intensity (analogous to the two points on the floor) with the
"distance" between two tones of different pitch but equal
intensity (analogous to the two points on the wall). The
measure-conditions are thus quite different in this manifold.



In the system of colours, too, the measure-relations have their own
peculiarity. The dimensions of the manifold of colours are the same as
those of space, as each colour can be produced by mixing the
three "primary" colours. But there is no relation between two
arbitrary colours, which would correspond to the distance between two
points in space. Only when a third colour is derived by mixing these
two, does one obtain an equation between these three colours similar to
that which connects three points in space lying in one straight line.



These examples, which are borrowed from Helmholtz's essays, serve to
show that the measure-relations of a continuous manifold are not already
given in its definition as a continuous manifold.

nor by fixing its dimensions. A continuous manifold generally allows of
various measure-relations. It is only experience which enables us to
derive the measure-laws which are valid for each particular manifold.
The fact, discovered by experience, that the dimensions of bodies are
independent of their particular position and motion, led to the laws of
Euclidean geometry where congruence is the deciding factor in
comparing various portions of space. These questions have been
exhaustively treated by Helmholtz in various essays. References:—



Riemann, "Über die Hypothesen, welche der Geometrie zugrunde liegen"
(1854). Newly published and annotated by H. Weyl, Berlin, 1919.



Helmholtz. "Ueber die tatsächlichen Grundlagen der Geometrie,"
Wiss. Abh. 2, S. 10.



Helmholtz. "Ueber die Tatsachen, welche der Geometrie zugrunde liegen,"
Wiss. Abh. 2, S. 618.



Helmholtz. "Ueber den Ursprung und die Bedeutung der geometrischen Axiome,"
Vorträge und Reden, Bd. 2, S. 1.



Note 7 (p. 26). The postulate that finite rigid
bodies are to be capable of free motions, can be most strikingly
illustrated in the realm of two-dimensions. Let us imagine a triangle to be
drawn upon a sphere, and also upon a plane: the former being
bounded by arcs of great circles and the latter by straight lines; one can
then slide these triangles over their respective surfaces at will, and can
make them coincide with other triangles, without thereby altering the
lengths of the sides or the angles. Gauss has shown that this is
possible because the curvature at every point of the sphere (or
the plane, respectively) has exactly the same value. And yet the
geometry of curves traced upon a sphere is different from that of curves

traced upon a plane, for the reason that these two configurations
cannot be deformed into one another without tearing (vide Note 27).
But upon both of them planimetrical figures can be freely
shifted about, and, therefore, theorems of congruence hold upon them.
If, however, we were to define a curvilinear triangle upon an egg-shaped
surface by the three shortest lines connecting three given points upon
it, we should find that triangles could be constructed at different
places on this surface, having the same lengths for the sides; but these
sides would enclose angles different from those included by the
corresponding sides of the initial triangle, and, consequently, such
triangles would not be congruent, in spite of the fact that
corresponding sides are equal. Figures upon an egg-shaped surface
cannot, therefore, be made to slide over the surface without altering
their dimensions: and in studying the geometrical conditions upon such a
surface, we do not arrive at the usual theorems of congruence. Quite
analogous arguments can be applied to three- and four-dimensional
realms: but the latter cases offer no corresponding pictures to the
mind. If we demand that bodies are to be freely movable in space
without suffering a change of dimensions, the "curvature" of the
space must be the same at every point. The conception of curvature, as
applied to any manifold of more than two dimensions, allows of strict
mathematical formulation; the term itself only hints at its analogous
meaning, as compared with the conception of curvature of a surface. In
three-dimensional space, too, various cases can be distinguished,
similarly to plane- and spherical-geometry in two-dimensional
space. Corresponding to the sphere, we have a non-Euclidean space
with constant positive curvature; corresponding to the plane we

have Euclidean space with curvature zero. In both these spaces bodies
can be moved about without their dimensions altering; but Euclidean
space is furthermore infinitely extended: whereas "spherical" space,
though unbounded, like the surface of a sphere, is not infinitely
extended. These questions are to be found extensively treated in a very
attractive fashion in Helmholtz's familiar essay: "Ueber den Ursprung
und die Bedeutung der geometrischen Axiome" (Vorträge und Reden,
Bd. 2, S. 1).



Note 8 (p. 26). The properties, which the
analytical expression for the length of the line-element must have, may
be understood from the following:



Let the numbers  ,   denote any point of any continuous
two-dimensional manifold, e.g. a surface. Then, together with this
point, a certain "domain" around the point is given, which includes
points all of which lie in the plane.—D. Hilbert has strictly
defined the conception of a multiply-extended magnitude (i.e. a
manifold) upon the basis of the theory of aggregates in his "Grundlagen
der Geometrie" (p. 177). In this definition the conception of the
"domain" encircling a point is made to give Riemann's postulate of the
continuous connection existing between the elements of a manifold
and a strict form.



Setting out from the point  ,   we can continuously
pass into its domain, and at any point, e.g.  ,
 , inquire as to the "distance" of this point from the
starting-point. The function which measures this distance will
depend upon the values of  ,  ,  ,  ,
and for every intermediate point of the path which has conducted
us from  ,   to the point  ,   will successively assume certain continually changing, and, as
we may suppose, continually increasing, values. At the point

 ,   itself it will assume the value zero, and for
every other point of the domain its value must be positive. Moreover, we
shall expect to find that, for any intermediate point, denoted by
 ,  ,   and   the required
function which measures the distance of this point from  ,
 , will, at this point, have a value half that of its value for
the point  ,  . Under these
assumptions, the function will be homogeneous and of the first degree in
the  's; its value will then appear multiplied by that factor in
proportion to which the  's were increased. In addition, it must
itself vanish if all the  's are zero; and if they all change their
sign it must not alter its value, which always remains positive. It will
immediately be evident that the function
 
fulfils all these requirements; but it is by no means the only function
of this kind.



Note 9 (p. 29). But the expression of the fourth
degree for the fine element would not permit of any geometrical
interpretation of the formula, such as is possible with the expression
 
which latter may be regarded as a general case of Pythagoras' theorem.



Note 10 (p. 30). By a "discrete" manifold we
mean one in which no continuous transition of the single elements from one
to another is possible, but each element to a certain extent represents an
independent entity. The aggregate of all whole numbers, for instance, is a
manifold of this type, or the aggregate of all planets
in our solar system, etc., and many other examples may be found; and

indeed all finite aggregates in the theory of aggregates are such
discrete manifolds. "Measuring," in the case of discrete manifolds, is
performed merely by "counting," and does not present any special
difficulties, as all manifolds of this type are subject to the same
principle of measurement. When Riemann then proceeds to say: "Either,
therefore, the reality which underlies space must form a discrete
manifold, or we must seek the ground of its metric relations outside it,
in binding forces which act upon it," he only wishes to hint at a
possibility, which is at present still remote, but which must, in
principle, always be left open. In just the last few years a similar
change of view has actually occurred in the case of another manifold
which plays a very important part in physics, viz. "energy"; the
meaning of the hint Riemann gives will become clearer if we consider
this example.



Up till a few years ago, the energy which a body emanates by radiation
was regarded as a continuously variable quantity: and attempts were
therefore made to measure its amount at any particular moment by means
of a continuously varying sequence of numbers. The researches of Max
Planck have, however, led to the view that this energy is emitted in
"quanta," and that therefore the "measuring" of its amount is performed
by counting the number of "quanta." The reality underlying radiant
energy, according to this, is a discrete and not a continuous
manifold. If we now suppose that the view were gradually to take root
that, on the one hand, all measurements in space only have to do with
distances between ether-atoms; and that, on the other hand, the
distances of single ether-atoms from one another can only assume certain

definite values, all distances in space would be obtained by "counting"
these values, and we should have to regard space as a discrete manifold.



Note 11 (p. 32). C. Neumann. "Ueber die
Prinzipien der Galilei-Newtonschen Theorie," Leipzig 1870, S. 18.



Note 12 (p. 32). H. Streintz. "Die
physikalischen Grundlagen der Mechanik," Leipzig, 1883.



Note 13 (p. 33). A. Einstein. "Annalen der
Physik," 4 Folge, Bd. 17, S. 891.



Note 14 (p. 35). Minkowski was the first to call
particular attention to this deduction of the special principle of
relativity.



Note 15 (p, 38). The term "inertial system"
was originally not associated with the system, which Neumann attached to
the hypothetical body  . Nowadays it is generally understood to
signify a rectilinear system of co-ordinates, relatively to which a
point-mass, which is only subject to its own inertia, moves uniformly in
a straight line. Whereas C. Neumann only invented the body  , as
an absolutely hypothetical configuration, in order to be able to
formulate the law of inertia, later researches, especially those of
Lange, tended to show that, on the basis of rigorous kinematical
considerations, a co-ordinate system could be derived, which would
possess the properties of such an inertial system. However, as C.
Neumann and J. Petzoldt have demonstrated, these developments contain
faulty assumptions, and give the law of inertia no firmer basis than the
body   introduced by Neumann.



Such an inertial system is determined by the straight lines which
connect three point-masses infinitely distant from one another (and thus
unable to exert a mutual influence upon one another) and which are not
subject to any other forces. This definition makes it evident why no

inertial system will be discoverable in nature, and why, consequently,
the law of inertia will never be able to be formulated so as to satisfy
the physicist. References:—



C. Neumann. "Ueber die Prinzipien der Galilei-Newtonschen Theorie,"
Leipzig, 1870.



L. Lange. "Berichte der Kgl. Sächs. Ges. d. Wissenschaften. Math.-phil.
Klasse," 1885.



L. Lange. "Die Geschichte der Entwickelung des Bewegungsbegriffes,"
Leipzig, 1886.



H. Seeliger. "Ber. der Bayr. Akademie," 1906, Heft 1.



C. Neumann. "Ber der Kgl. Sächs. Ges. d. Wiss. Math.-phys. Klasse,"
1910, Bd. 62, S. 69 and 383.



J. Petzoldt. "Ann. der Naturphilosophie," Bd. 7.



Note 16 (p. 38). E. Mach. "Die Mechanik in in
ihrer Entwickelung," 4 Aufl. S. 244.



Note 17 (p. 40). The new points of view as to
the nature of inertia are based upon the study of the electromagnetic
phenomena of radiation. The special theory of relativity, by stating the
theorem of the inertia of energy, organically grafted these views on to
the existing structure of theoretical physics. The dynamics of
cavity-radiation, i.e. the dynamics of a space enclosed by walls without
mass, and filled with electromagnetic radiation, taught us that a system
of this kind opposes a resistance to every change of its motion, just
like a heavy body in motion. The study of electrons (free electric
charges) in a state of free motion, e.g. in a cathode-tube, taught us
likewise that these exceedingly small particles behave like inert
bodies; that their inertia is not, however, conditioned by the matter to
which they might happen to be attached, but rather by the
electromagnetic effects of the field to which the moving electron
is subject. This gave rise to the conception of the apparent

(electromagnetic) mass of an electron. The special theory of relativity
finally led to the conclusion that to all energy must be accorded
the property of inertia.



Every body contains energy (e.g. a certain definite amount in the form
of heat-radiation internally). The inertia, which the body reveals, is
thus partly to be debited to the account of this contained energy. As
this share of inertia is, according to the special theory of relativity,
relative (i.e. represents a quantity which depends upon the choice of
the system of reference), the whole amount of the inertial mass of the
body has no absolute value, but only a relative one. This energy-content
of radiant heat is distributed throughout the whole volume of each
particular body; one can thus speak of the energy-content of unit
volume. This enables us to derive the notion of density of energy. The
density of the energy (i.e. amount per unit volume) is thus a quantity,
the value of which is also dependent upon the system of reference.
References:—



M. Planck. "Ann. der Phys.," 4 Folge, Bd. 26.



M. Abraham. "Electromagnetische Energie der Strahlung," 4 Aufl., 1908.



Note 18 (p. 40). The determination of the
inertial mass of a body by measuring its weight is rendered possible
only by the experimental fact that all bodies fall with equal
acceleration in the gravitational field at the earth's surface. If  
and  ' denote the pressures of two bodies upon the same support
(i.e. their respective weights), and   denote the acceleration due
to the earth's gravitational field at the point in question, then   dynes and   dynes, respectively, where   and
 ' are the factors of proportionality, and are called the
masses of the two bodies, respectively. As   has the same
value in both equations, we have

 
and we can accordingly measure the masses of two bodies at the
same place, by determining their weights.



Although Galilei and Newton had already known that all bodies at the
same place fall with the same velocity (if the resistance of the air be
eliminated), this very remarkable fact has not received any recognition
in the foundations of mechanics. Einstein's principle of equivalence is
the first to assign to it the position to which it is, beyond doubt,
entitled.



Note 19 (p. 41). Arguing along the same lines
B. and J. Friedländer have suggested an experiment to show the
relativity of rotational motions, and, accordingly, the reversibility of
centrifugal phenomena ("Absolute and Relative Motion," Berlin, Leonhard
Simion, 1896). On account of the smallness of the effect, the experiment
cannot, at present, be performed successfully; but it is quite
appropriate for making the physical content of this postulate more
evident. The following remarks may be quoted:



"The torsion-balance is the most sensitive of all instruments. The
largest rotating-masses, with which we can experiment, are probably the
large fly-wheels in rolling-mills and other big factories. The
centrifugal forces assert themselves as a pressure which tends from the
axis of rotation. If, therefore, we set up a torsion-balance in somewhat
close proximity to one of these large fly-wheels, in such a position
that the point of suspension of the movable part of the torsion-balance
(the needle) lies exactly, or as nearly as possible, in the
continuation of the axis of the fly-wheel, the needle should endeavour

to set itself parallel to the plane of the fly-wheel, if it is not
originally so, and should register a corresponding displacement. For
centrifugal force acts upon every portion of mass which does not lie
exactly in the axis of rotation, in such a way as to tend to increase
the distance of the mass from the axis. It is immediately apparent that
the greatest possible displacement-effect is attained when the needle is
parallel to the plane of the wheel."



This proposed experiment of B. and J. Friedländer is only a variation
of the experiment which persuaded Newton to his view of the absolute
character of rotation. Newton suspended a cylindrical vessel filled with
water by a thread, and turned it about the axis defined by the thread
till the thread became quite stiff. After the vessel and the contained
liquid had completely come to rest, he allowed the thread to untwist
itself again, whereby the vessel and the liquid started to rotate
rapidly. He thereby made the following observations. Immediately after
its release the vessel alone assumed a motion of rotation, since
the friction (viscosity) of the water was not sufficient to transmit the
rotation immediately to the water. So long as this state of affairs
prevailed, the surface of the water remained a horizontal plane. But the
more rapidly the water was carried along by the rotating walls of the
vessel, the more definitely did the centrifugal forces assert
themselves, and drive the water up the walls, so that finally its free
surface assumed the form of a paraboloid of revolution. From these
observations Newton concluded that the rotation of the walls of
the vessel relative to the water does not call up forces in the
latter. Only when the water itself shares in the rotation, do the
centrifugal forces make their appearance. From this he came to his
conclusion of the absolute character of rotations.




This experiment became a subject of frequent discussion later: and E.
Mach long ago objected to Newton's deduction, and pointed out that it
cannot be straightway affirmed that the rotation of the walls of the
vessel relative to the water is entirely without effect upon the latter.
He regards it as quite conceivable that, provided the mass of the vessel
were large enough, e.g. if its walls were many kilometres thick, then
the free surface of the water which is at rest in the rotating vessel
would not remain plane. This objection is quite in keeping with the view
entailed by the general theory of relativity. According to the latter,
the centrifugal forces can also be regarded as gravitational forces,
which the total sum of the masses rotating around the water exerts upon
it. The gravitational effect of the walls of the vessel upon the
enclosed liquid is, of course, vanishingly small compared with that of
all the masses in the universe. It is only when the water is in rotation
relatively to all these masses that perceptible centrifugal forces are
to be expected. The experiment of B. and J. Friedländer was intended to
refine the experiment performed by Newton, by using a sensitive
torsion-balance susceptible to exceedingly small forces in place of the
water, and by substituting a huge fly-wheel for the vessel which
contained the water. But this arrangement, too, can lead to no positive
result, as even the greatest fly-wheel at present available represents
only a vanishingly small mass compared with the sum-total of masses in
the universe.



Note 20 (p. 42). We use the term "field of
force" to denote a field in which the force in question varies continuously
from place to place, and is given for each point in the field by the value
of some function of the place. The centrifugal forces in the

interior and on the outer surface of a rotating body are so distributed
as to compose a field of this kind throughout the whole volume of the
body, and there is nothing to hinder us from imagining this field to
extend outwards beyond the outer surface of the body, e.g. beyond the
surface of the earth into its own atmosphere. We can thus briefly speak
of the whole field as the centrifugal field of the earth; and, as the
centrifugal field, according to the older views, is conditioned only by
the inertia of bodies, and not by their gravitation, we can further
speak of it as an inertial field, in contradistinction to the
gravitational field, under the influence of which all bodies which are
not suspended or supported fall to earth.



Accordingly the effects of various fields of force are superposed at the
earth's surface: (1) the effect of the gravitational field, due to the
gravitation of the particles of the earth's mass towards one another,
and which is directed towards the centre of the earth; (2) the effect of
the centrifugal field, which, according to Einstein's view, can be
regarded as a gravitational field, and the direction of action of which
is outwards and parallel to the plane of the meridian of latitude;
finally (3) the effect of the gravitational field, due to the various
heavenly bodies, foremost amongst them, the sun and the moon.



Note 21 (p. 42). Eötvös has published the
results of his measurements in the "Mathematische und
Naturwissenschaftliche Berichte aus Ungarn," Bd. 8, S. 64, 1891. A
detailed account is given by D. Pekár, "Das Gesetz der
Proportionalität von Trägheit und Gravitation." "Die
Naturwissenschaft," 1919, 7, p. 327.



Whereas the earlier investigations of Newton and Bessel ("Astr. Nachr."
10, S. 97, and "Abhandlungen von Bessel," Bd. 3, S. 217), about the

attractive effect of the earth upon various substances, are based upon
observations with a pendulum, Eötvös worked with sensitive
torsion-balances.



The force, in consequence of which bodies fall, is composed of two
components: first the attractive force of the earth, which (except for
deviations which may, for the present, be neglected) is directed towards
the centre of the earth; and, second, the centrifugal force, which is
directed outwards parallel to the meridians of latitude. If the
attraction of the earth upon two bodies of equal mass but of different
substance were different, the resultant of the attractive and
centrifugal forces would point in a different direction for each body.
Eötvös then states: "By calculation we find that if the attractive
effect of the earth upon two bodies of equal mass, but composed of
different substance, differed by a thousandth, the directions of the
gravitational forces acting upon the two bodies respectively would make
an angle of 0.356 second, i.e. about a third of a second with one
another; "and if the difference in the attractive force were to amount
to a twenty-millionth, this angle would have to be
 th seconds; that is, slightly more than
 th of a second; and later:



"I attached separate bodies of about 30 grms. weight to the end of a
balance-beam about 25 to 30 cms. long, suspended by a thin platinum wire
in my torsion-balance. After the beam had been placed in a position
perpendicular to the meridian, I determined its position exactly by
means of two mirrors, one fixed to it and another fastened to the case
of the instrument. I then turned the instrument, together with the case,
through 180°, so that the body which was originally at the east end of
the beam now arrived at the west end: I then determined the position of

the beam again, relative to the instrument. If the resultant weights of
the bodies attached to both sides pointed in different directions, a
torsion of the suspending wire should ensue. But this did not occur in
the cases in which a brass sphere was constantly attached to the one
side, and glass, cork, or crystal antimony was attached to the other;
and yet a deviation of  th of a second in the
direction of the gravitational force would have produced a torsion of
one minute, and this would have been observed accurately."



Eötvös thus attained a degree of accuracy, such as is approximately
reached in weighing; and this was his aim: for his method of determining
the mass of bodies by weighing is founded upon the axiom that the
attraction exerted by the earth upon various bodies depends only upon
their mass, and not upon the substance composing them. This axiom had,
therefore, to be verified with the same degree of accuracy as is
attained in weighing. If a difference of this kind in the gravitation of
various bodies having the same mass but being composed of different
substance exists at all, it is, according to Eötvös, less than a
twenty-millionth for brass, glass, antimonite, cork, and less than a
hundred-thousandth for air.



Note 22 (p. 44). Vide also A. Einstein,
"Grundlagen der allgemeinen Relativitätstheorie," "Ann. d. Phys.," 4 Folge,
Bd. 49, S. 769.



Note 23 (p. 46). The equation   asserts that the variation in the length of path between two
sufficiently near points of the path vanishes for the path actually
traversed; i.e. the path actually chosen between two such points is the
shortest of all possible ones. If we retain the view of classical
mechanics for a moment, the following example will give us the sense of

the principle clearly: In the case of the motion of a point-mass, free
to move about in space, the straight line is always the shortest
connecting line between two points in space: and the point-mass will
move from the one point to the other along this straight line, provided
no other disturbing influences come into play (Law of inertia). If the
point-mass is constrained to move over any curved surface, it will pass
from one point to another along a geodetic line to the surface, since
the geodetic lines represent the shortest connecting lines between
points on the surface. In Einstein's theory there is a fully
corresponding principle, but of a much more general form. Under the
influence of inertia and gravitation every point-mass passes
along the geodetic lines of the space-time-manifold. The fact of these
lines not, in general, being straight lines, is due to the gravitational
field, in a certain sense, putting the point-mass under a sort of
constraint, similar to that imposed upon the freedom of motion of the
point-mass by a curved surface. A principle in every way corresponding
had already been installed in mechanics as a fundamental principle for
all motions by Heinrich Hertz. 


Note 24 (p. 48). Vide A. Einstein, "Ann.
d. Phys.," 4 Folge, Bd. 35, S. 898.



Note 25 (p. 48). The expression
"acceleration-transformation" means that the equations giving the
transformation from the variables  ,  ,  ,   to the
system of variables  ,  ,  ,  , which is
the basis of our discussion, can be regarded as giving the relations
between two systems of reference which are moving with an
accelerated motion relatively to one another. The nature of the
state of motion of two systems of reference relative to one another
finds its expression in the analytical form of the equations of
transformation of their co-ordinates.




Note 26 (p. 51). Two things are to be undertaken
in the following: (1) the fundamental equations of the new theory are to be
written in an explicit form, and (2) the transition to Newton's
fundamental equations is to be performed.



1. From the equation of variation   where
 
we have, after carrying out the operation of variation, the four total
differential equations:
 
These are the equations of motion of a material point in the
gravitational field defined by the  's.



The symbol   here denotes the expression
 
The symbol   denotes the minor of  
in the determinant
 
divided by the determinant itself.



The ten differential equations for the "gravitational potentials" are:
 



The quantities   and   are expressions which are
related in a simple manner to the components of the stress-energy-tensor

(which plays the part of the quantity exciting the field in the new
theory in place of the density of mass).   is essentially equal
to the gravitational constant of Newton's theory.



The differential equations (1) and (2) are the
fundamental equations of the new theory. The derivation of these
equations is carried out in detail in the tract by A. Einstein, "The
Foundations of the General Principle of Relativity," J. A. Barth,
Leipzig, 1916.



2. In order to obtain a connection between these equations and Newton's
theory, we must make several simplifying assumptions. We shall first
assume that the  's differ only by quantities which are
small compared with unity from the values given by the scheme:
 
These values for the  's characterize the case of the
special theory of relativity, i.e. the case of the condition free of
gravitation. We shall also assume that, at infinite distances, the
 's tend to, and do finally, assume the above values; that
is, that matter does not extend into infinite space.



Secondly, we shall assume that the velocities of matter are small
compared with the velocity of light, and can be regarded as small
quantities of the first order. The quantities
 
will then be infinitely small quantities of the first order, and
  will equal 1, except for quantities of

the second order. From the equations defining the
  it will then be seen that these quantities
will be infinitely small, of the first order. If we neglect quantities
of the second order, and finally assume that, for small velocities of
matter, the changes of the gravitational field with respect to time are
small (i.e. that the derivatives of the s with respect to time may be
neglected in comparison with the derivatives taken with regard to the
space-co-ordinates) the system of equations (1) assumes the form:
 
This would be the equation of motion of a point-mass as already given by
Newton's mechanics, if   be taken as representing
the ordinary gravitational potential. It still remains to be seen what
the differential equation for   becomes in the new theory under
the simplifying assumptions we have chosen.



The stress-energy-tensor, which excites the field, degenerates, as a
result of our quite special assumptions, into the density of mass:
 
In the differential equations (2) the second term on the left-hand side
is the product of two magnitudes, which, according to the above
arguments, are to be regarded as infinitely small quantities of the
first order. Thus the second term, being of the second order of small
quantities, may be dismissed. The first term, on the other hand, if we
omit the terms differentiated with respect to time, as above (i.e. if we
regard the gravitational field as "stationary"), reduces to:
 

The differential equation for   thus degenerates into Poisson's
equation:
 
Thus, to a first approximation (i.e. if one regards the velocity of
light as infinitely great, and this is a characteristic feature of the
classical theory, as was explained in detail in
§ 3(b): if
certain simple assumptions are made about the behaviour of the
 's at infinity; and if the time-changes of the
gravitational field are neglected) the well-known equations of Newtonian
mechanics emerge out of the differential equations of Einstein's theory,
which were obtained from perfectly general beginnings.



Note 27 (p. 53). The theory of surfaces, i.e.
the study of geometry upon surfaces, makes it immediately apparent that
the theorems, which have been established for any surface, also hold for
any surface which can be generated by distorting the first without
tearing. For if two surfaces have a point-to-point correspondence,
such that the line-elements are equal at corresponding points,
then corresponding finite arcs, angles, and areas, etc., will be equal.
One thus arrives at the same planimetrical theorems for the two
surfaces. Such surfaces are called "deformable" surfaces. The
necessary and sufficient condition that surfaces be continuously
deformable is that the expression for the line-element of the one
surface
 
can be transformed into that for the other,
 
According to Gauss, it is necessary that both surfaces have equal

measures of curvature. If the latter is constant over the whole
surface, as e.g. in the case of a cylinder or a plane, all conditions
for the deformability of the surfaces are fulfilled. In other cases,
special equations offer a criterion as to whether surfaces, or portions
of surfaces, are deformable into one another. The numerous subsidiary
problems, which result out of these questions, are discussed at length
in every book dealing with differential geometry (e.g. Bianchi-Lukat).[17]
This branch of training, which was hitherto of interest only to
mathematicians, now assumes very considerable importance for the
physicist too.






[17]Forsyth's "Differential Geometry."—H. L. B.




Note 28 (p. 61). One must avoid being
deceived into the belief that Newton's fundamental law is in any way to
be regarded as an explanation of gravitation. The conception of
attractive force is borrowed from our muscular sensations, and has
therefore no meaning when applied to dead matter. C. Neumann, who took
great pains to place Newton's mechanics on a solid basis, glosses upon
this point himself in a drastic fashion, in the following narrative,
which shows up the weaknesses of the former view:



"Let us suppose an explorer to narrate to us his experiences in yonder
mysterious ocean. He had succeeded in gaining access to it, and a
remarkable sight had greeted his eyes. In the middle of the sea he had
observed two floating icebergs, a larger and a smaller one, at a
considerable distance from one another. Out of the interior of the
larger one, a voice had resounded, issuing the following command in a
peremptory tone: 'Ten feet nearer!' The little iceberg had immediately
carried out the order, approaching ten feet nearer the larger one.
Again, the larger gave out the order: 'Six feet nearer!' The other had

again immediately executed it. And in this manner order after order had
echoed out: and the little iceberg had continually been in motion, eager
to put every command immediately and implicitly into action.



"We should certainly consign such a report to the realm of fables. But
let us not scoff too soon! The ideas, which appear so extraordinary to
us in this case, are exactly the same as those which lie at the base of
the most complete branch of natural science, and to which the most
famous of physicists owes the glory attached to his name.



"For in cosmic space such commands are continually resounding,
proceeding from each of the heavenly bodies—from the sun, planets,
moons, and comets. Every single body in space hearkens to the orders
which the other bodies give it, always striving to carry them out
punctiliously. Our earth would dash through space in a straight line, if
she were not controlled and guided by the voice of command, issuing from
moment to moment, from the sun, in which the instructions of the
remaining cosmic bodies are less audibly mingled.



"These commands are certainly given just as silently as they are
obeyed; and Newton has denominated this play of interchange between
commanding and obeying by another name. He talks quite briefly of a
mutual attractive force, which exists between cosmic bodies. But the
fact remains the same. For this mutual influence consists in one body
dealing out orders, and the other obeying them."

















ON THE THEORY OF RELATIVITY


By Henry L. Brose, M.A.


INTRODUCTORY



PHYSICS, being a science of observation
which seeks to arrange natural phenomena into a consistent scheme by
using the methods and language of mathematics, has to inquire whether
the assumptions implied in any branch of mathematics used for this
purpose are legitimate in its sphere, or whether they are merely the
outcome of convention, or have been built up from abstract notions
containing foreign elements. The use of a unit length as an unalterable
measure, or of a time-division, has been accepted in traditional
mechanics without inconsistency manifesting itself in general until the
field of electrodynamics became accessible to investigators and rendered
a re-examination of the foundations of our modes of measurement
necessary. It is upon these that the whole science of mathematical
physics rests. The road of advance of all science is in like manner
conditioned by the inter-play of observations and notions, each
assisting the other in giving us a clearer view of Nature regarded
purely as a physical reality. The discovery of additional phenomena
presages a still greater unification, revealing new relations and
exposing new differences; the ultimate aim of physics would seem to

consist in reaching perfect separation and distinctness of detail
simultaneously with perfect co-ordination of the whole. "The
all-embracing harmony of the world is the true source of beauty and is
the real truth," as Poincaré has expressed it. The noblest task of
co-ordinating all knowledge falls to the lot of philosophy.



A principle which has proved fruitful in one sphere of physics suggests
that its range may be extended into others; nowhere has this led to more
successful results than in the increasing generalization which has
characterized the advance of the principle of relativity. This advance
is marked by three stages, quite distinct, indeed, in the nucleus of
their growth, yet each succeeding stage including the results of
the earlier.



Relativity first makes its appearance as a governing principle in
Newtonian or Galilean mechanics; difficulties arising out of the study
of the phenomena of radiations led to a new enunciation of the principle
upon another basis by Einstein in 1905, an enunciation which comprised
the phenomena of both mechanics and radiation: this will be referred to
as the "special" principle of relativity to distinguish it from the
"general" principle of relativity enunciated by Einstein in 1915, and
which applied to all physical phenomena and every kind of motion. The
latter theory also led to a new theory of gravitation.










I. The Mechanical Theory of Relativity



In order to arrive at the precise significance of the principle of
relativity in the form in which it held sway in classical mechanics, we
must briefly analyse the terms which will be used to express it.

Mechanics is usually defined as the science which describes how the
"position of bodies in 'space' alters with the 'time.'" We shall for the
present discuss only the term "position," which also involves
"distance," leaving time and space to be dealt with later when we have
to consider the meaning of physical simultaneity. Modern pure geometry
starts out from certain conceptions such as "point," "straight line,"
and "plane," which were originally abstracted from natural objects and
which are implicitly defined by a number of irreducible and
independent axioms; from these a series of propositions is deduced by
the application of logical rules which we feel compelled to regard as
legitimate. The great similarity which exists between geometrically
constructed figures and objects in Nature has led people erroneously to
regard these propositions as true: but the truth of the propositions
depends on the truth of the axioms from which the propositions were
logically derived. Now empirical truth implies exact
correspondence with reality. But pure geometry by the very nature
of its genesis excludes the test of truth. There are no geometrical
points or straight lines in Nature, nor geometrical surfaces; we only
find coarse approximations which are helpful in representing these
mathematically conceived elements.



If, however, certain principles of mechanics are conjoined with the
axioms of geometry, we leave the realm of pure geometry and obtain a set
of propositions which may be verified by comparison with experience, but
only within limits, viz. in respect to numerical relations, for again no
exact correspondence is possible, merely a superposition of geometrical
points with places occupied by matter. Our idea of the form of space is
derived from the behaviour of matter, which, indeed, conditions it.

Space itself is amorphous, and we are at liberty to build up any
geometry we choose for the purpose of making empirical content fit into
it. Neither Euclidean, nor any of the forms of meta-geometry, has any
claim to precedence. We may select for a consistent description of
physical phenomena whichever is the more convenient, and requires a
minimum of auxiliary hypotheses to express the laws of physical nature.



Applied geometry is thus to be treated as a branch of physics. We are
accustomed to associate two points on a straight line with two marks on
a (practically) rigid body: when once we have chosen an arbitrary, rigid
body of reference, we can discuss motions or events mechanically by
using the body as the seat of a set of axes of co-ordinates. The use of
the rule and compasses gives us a physical interpretation of the
distance between points, and enables us to state this distance by
measurement numerically, inasmuch as we may fix upon an arbitrary unit
of length and count how often it has to be applied end to end to occupy
the distance between the points. Every description in space of the scene
of an event or of the position of a body consists in designating a point
or points on a rigid body imagined for the purpose, which coincides with
the spot at which the event takes place or the object is situated. We
ordinarily choose as our rigid body a portion of the earth or a set of
axes attached to it.



Now Newton's (or Galilei's) law of motion states that a body which is
sufficiently far removed from all other bodies continues in its state of
rest or uniform motion in a straight line. This holds very approximately
for the fixed stars. If, however, we refer the motion of the stars to a
set of axes fixed to the earth, the stars describe circles of immense

radius; that is, for such a system of reference the law of inertia only
holds approximately. Hence we are led to the definition of Galilean
systems of co-ordinates. A Galilean system is one, the state of
motion of which is such that the law of inertia holds for it. It
follows naturally that Newtonian or Galilean mechanics is valid only for
such Galilean or inertial systems of co-ordinates, i.e. in formulating
expressions for the motion of bodies we must choose some such system at
an immense distance where the Newtonian law would hold. It will be
noticed that this is an abstraction, and that such a system is merely
postulated by the law of motion. It is the foundation of classical
mechanics, and hence also of the first or "mechanical" principle of
relativity.



If we suppose a crow flying in a straight line at uniform velocity with
respect to the earth diagonally over a train likewise moving uniformly
and rectilinearly with respect to the earth (since motion is change of
position we must specify our rigid body of reference, viz. the earth),
then an observer in the train would also see the crow flying in a
straight line, but with a different uniform velocity, judged from a
system of co-ordinates attached to the train. We may consider both the
train and the earth to be carriers of inertial systems as we are only
dealing with small distances. We can then formulate the mechanical
principle of relativity as follows:—



If a body be moving uniformly and rectilinearly with respect to a
co-ordinate system   then it will likewise move uniformly
and rectilinearly with respect to a second co-ordinate system
 ', provided that the latter be moving uniformly and
rectilinearly with respect to the first system  .



In our illustration, the crow represents the body,   is
the earth, and  ' is carried by the train.




Or, we may say that if   be an inertial system then
 ', which moves uniformly and rectilinearly with respect to
 , is also an inertial system. Hence, since the laws of
Newtonian mechanics are based on inertial systems, it follows that all
such systems are equivalent for the description of the laws of
mechanics: no one system amongst them is unique, and we cannot define
absolute motion or rest; any systems moving with mutual rectilinear
uniform motion may be regarded as being at rest. Mathematically, this
means that the laws of mechanics remain unchanged in form for any
transformation from one set of inertial axes to another.



The development of electrodynamics and the phenomena of radiation
generally showed, however, that the laws of radiation in one inertial
system did not preserve their form when referred to another inertial
system:   and  ' were no longer equivalent for
the description of phenomena such as that of light passing through a
moving medium. This meant that either there was a unique inertial system
enabling us to define absolute motion and rest in nature, or that we
would have to build up a theory of relativity, not on the
inertial law and inertial systems, but on some new foundation which
would definitely ensure that the form of all physical laws would
be preserved in passing from one system of reference to another.



This dilemma arose out of the conflicting results of two experiments,
viz. Fizeau's and Michelson and Morley's.



Fizeau's experiment was designed to determine whether the velocity of
light through moving liquid media was different from that through a
stationary medium, i.e. whether the motion of the liquid caused a drag
on the æther, which it would do if the mechanical law of relativity

held for light phenomena, for then the light ray would be in the same
position as a swimmer travelling upstream or downstream respectively.[18]






[18]It is well known that it takes a swimmer longer to travel a
certain distance up and down stream than to swim across the stream
and back an equal distance.




No "ether-drag" was, however, detected; only a fraction of the velocity
of the liquid seemed to be added to the velocity of light ( ) under
ordinary conditions, and this fraction depends on the refractive index
of the liquid, and had previously been calculated by Fresnel: for a
vacuum this fraction vanishes.



This result seemed to favour the hypothesis of a fixed ether, as was
supported by Fresnel and Lorentz. But a fixed ether implies that we
should be able to detect absolute motion, that is, motion with respect
to the ether.



Arguing from this, let us consider an observer in the liquid moving with
it. If there is a fixed ether, he should find a lesser value for
the velocity of light (i.e.  ) owing to his own velocity in the same
direction, or vice versa in the opposite direction.



But we on the earth are in the position of the observer in the liquid
since we revolve around the sun at the rate of, approximately, 30 kms.
per second (i.e.  ). and we are subject to a
translatory motion of about the same magnitude: hence we should be able
to detect a change in the velocity of light due to our change of motion
through the ether. These considerations give rise to Michelson and
Morley's experiment.



Michelson and Morley attempted to detect motion relative to the
supposedly fixed ether by the interference of two rays of light, one

travelling in the direction of motion of the earth's velocity, the other
travelling across this direction of motion.



No change in the initial interference bands was, however, observed when
the position of the instrument was changed, although such an effect was
easily within the limits of accuracy of the experiment. Many
modifications of the experiment likewise failed to demonstrate the
presence of an "ether-wind."



To account for these negative results as contradicting deductions from
Fizeau's experiment, Fitzgerald and, later, independently, Lorentz
suggested the theory that bodies automatically contract when moving
through the ether, and since our measuring scales contract in the same
ratio, we are unable to detect this alteration in length; this effect
would lead us always to get the same result for the velocity of light.
This contraction-hypothesis agrees well with the electrical theory of
matter and may be attributed to changes in the electromagnetic forces,
acting between particles, which determine the equilibrium of a so-called
rigid body.



Thus Michelson and Morley's experiment seems to prove that the principle
of relativity of mechanics also holds for radiation effects, that is, it
is impossible to determine absolute motion through the ether or space:
this implies that there is no unique system of co-ordinates. It
disagrees with Fizeau's result and seems to indicate the existence of a
"moving ether," i.e. an ether which is carried along by moving bodies,
as was upheld by Stokes and Hertz. Lord Rayleigh pointed out that if the
contraction-hypothesis of Lorentz and Fitzgerald were true, isotropic
bodies ought to become anisotropic on account of the motion of the
earth, and that consequently, phenomena of double refraction should make

their appearance. Experiments which he himself conducted with carbon
bisulphide and others carried out by Bruce with water and glass produced
a negative result.










II. The "Special" Theory of Relativity



Einstein, in the special theory of relativity, surmounts these
difficulties by doing away with the ether (as a substance) and assumes
that light-signals project themselves as such through space.
Faraday had already long ago expressed the opinion that the field in
which radiations take place must not be founded upon considerations of
matter, but rather that matter should be regarded as singularities or
places of a singular character in the field. We may retain the name
"ether" for the field as long as we do not regard it as composed of
matter of the kind we know. Einstein arrives at these conclusions by
critically examining our notions of space and time or of distance and
simultaneity.



We know what simultaneity (time-coincidence of two events) means for our
consciousness, but in making use of the idea of simultaneity in physics,
we must be able to prove by actual experiment or observation that two
events are simultaneous according to some definition of simultaneity.
A conception only has meaning for the physicist if the possibility of
verifying that it agrees with actual experience is given. In other
words, we must have a definition of simultaneity which gives us an
immediate means of proving by experiment whether, e.g. two
lightning-strokes at different places occur simultaneously for an
observer situated somewhere between them or not. Whenever measurements
are undertaken in physics two points are made to coincide, whether they
be marks on a scale and on an object, or whether they be cross-wires in

a telescope which have been made to coincide with a distant object to
allow angular measurements to be made; coincidence is the only exact
mode of observation, and lies at the bottom of all physical
measurements. The same importance attaches to simultaneity, which is
coincidence in time. It is to be noted that no definition will be made
for simultaneity occurring at (practically) one point: for this case
psychological simultaneity must be accepted as the basis: the necessity
for a physical definition arises only when two events happening at great
distances apart are to be compared as regards the moment of their
happening. We cannot do more than reduce the simultaneity of two events
happening a great distance apart to simultaneity referred to a single
observer at one point: this would satisfy the requirements of physics.



Einstein, accepting Michelson and Morley's result, introduced the
convention in 1905 that light is propagated with a constant velocity (=
 , i.e. 300,000 kms. per sec. approximately) in vacuo in all
directions, and he then makes use of light-signals to connect up two
events in time.



He illustrates his line of argument roughly by assuming two points,
  and  , very far apart on a railway embankment and an observer at
  midway between   and  , provided with a contrivance such as
two mirrors inclined at 90° and adjusted so that light from   and
  would be reflected into his vertical line of sight
(Fig. 3).



Two events such as lightning-strokes are then to be defined as
simultaneous for the observer at   if rays of light from them reach
the observer at the same moment (psychologically): i.e. if he sees the
strokes in his mirror-contrivance simultaneously.



Next suppose that a very long train is moving with very great uniform

velocity along the embankment, and that the lightning-strokes pass through
the two corresponding points   and   of the train thus:







fig03

Fig. 3.






The question now arises: Are the two lightning-strokes at   and
 , which are simultaneous with respect to the embankment also
simultaneous with respect to the moving train? It is quite clear that as
  is moving towards   and away from  , the observer at
  (mid-point of  ) will receive the ray emitted from
  sooner than that emitted from   and he would say that the
lightning-stroke at   or   occurred earlier than the one at
  or  . Hence our condition of simultaneity is not satisfied
and we are forced to the conclusion that events which are simultaneous
for one rigid body of reference (the embankment) are not simultaneous
for another body of reference (the train) which is in motion with regard
to the first rigid body of reference. This establishes the relativity of
simultaneity.



This is, of course, only an elementary example of a very special case of
the regulation of clocks by light-signals. It may be asked how the
mid-point   is found: one might simply fix mirrors at   and
  and by flashing light-signals from points between   and  
ascertain by trial the point ( ) at which the return-flashes are
observed simultaneously: this makes   the mid-point between the
"time"-distance from   and   on the embankment.



The relativity of simultaneity states that every rigid body of reference
(co-ordinate system) has its own time: a time-datum only has meaning

when the body of reference is specified, or we may say that simultaneity
is dependent on the state of motion of the body of reference.



Similar reasoning applies in the case of the distance between two points
on a rigid body. The length of a rod is defined as the distance,
measured by (say) a metre-rule, between the two points which are
occupied simultaneously by the two ends. Since simultaneity, as
we have just seen, is relative, the distance between two points, since
they depend on a simultaneous reading of two events, is also relative,
and length only has a meaning if the body of reference is likewise
specified: any change of motion entails a corresponding change of
length: we cannot detect the change since our measures alter in the same
ratio. Length is thus a relative conception, and only reveals a
relation between the observer and an object: the "actual" length of
a body in the sense we usually understand it does not exist: there is no
meaning in the term. The length of a body measured parallel to its
direction of motion will always yield a greater result when judged from
a system attached to it than from any other system. These few remarks
may suffice to indicate the relativity of distance.



In classical mechanics it had always been assumed that the time which
elapsed between the happening of two events, and also the distance
between two points of a rigid body were independent of the state of
motion of the body of reference: these hypotheses must, as a result of
the relativity of simultaneity and distance, be rejected. We may now ask
whether a mathematical relation between the place and time of occurrence
of various events is possible, such that every ray of light travels with
the same constant velocity   whichever rigid body of reference be

chosen, e.g. such that the rays measured by an observer either in the
train or on the embankment travel with the same apparent velocity.



In other words, if we assume the constancy of propagation of light in
vacuo for two systems,   and   moving
uniformly and rectilinearly with respect to one another, what are the
values of the co-ordinates  ,  ,  ,   of an
event with respect to  , if the values  ,  ,
 ,   of the same event with respect to   are given?



It is easy to arrive at this so-called Lorentz-Einstein transformation,
e.g. in the case where   is moving relative to  
parallel to  's   axis with uniform velocity  
we get:
 
 



If we put  , we find that   reduces to
 . i.e.   is the same for both
systems, and the condition of the constancy of  , the velocity of
light in vacuo, is preserved.



If   is to be real, then   cannot be
greater than  , i.e.   is the limiting or maximum velocity in
nature and has thus a universal significance.



If we imagine   to be infinitely great in comparison with   (and
this will be the case for all ordinary velocities, such as those which
occur in mechanics), the equations of transformation degenerate into:
 
This is the familiar Galilean transformation which holds for the

"mechanical" principle of relativity. We see that the Lorentz-Einstein
transformation covers both mechanical and radiational phenomena.



The special theory of relativity may now be enunciated as follows:
All systems of reference which are in uniform rectilinear motion with
regard to one another can be used for the description of physical events
with equal justification. That is, if physical laws assume a
particularly simple form when referred to any particular system of
reference, they will preserve this form when they are transformed to any
other co-ordinate system which is in uniform rectilinear motion
relatively to the first system. The mathematical significance of the
Lorentz-Einstein equations of transformation is that the expression for
the infinitesimal length of arc  
 
in the space-time[19]
manifold  ,  ,  ,  , preserves its form for all systems
moving uniformly and rectilinearly with respect to one another.






[19]A continuous manifold may be defined as any continuum of
elements such that a single element is defined by   continuously
variable magnitudes.




Interpreted geometrically this means that the transformation is
conformal in imaginary space of four dimensions. Moreover, the
time-co-ordinate enters into physical laws in exactly the same way as
the three space-co-ordinates, i.e. we may regard time spatially as a
fourth dimension of space. This has been very beautifully worked out by
Minkowski, whose premature loss is deeply to be regretted. It may be
fitting here to recall some remarks of Bergson in his "Time and Free
Will." He there states that "time is the medium in which conscious
states form discrete series: this time is nothing but space, and pure

duration is something different." Again, "what we call measuring time is
nothing but counting simultaneities; owing to the fact that our
consciousness has organized the oscillations of a pendulum as a whole in
memory, they are first preserved and afterwards disposed in a series: in
a word, we create for them a fourth dimension of space, which we call
homogeneous time, and which enables the movement of the pendulum,
although taking place at one spot, to be continually set in
juxtaposition to itself. Duration thus assumes the illusory form of a
homogeneous medium and the connecting link between these two terms,
space and duration, is simultaneity, which might be defined as the
intersection of time and space." Minkowski calls the space-time-manifold
"world" and each point (event) "world-point."



The results achieved by the special theory of relativity may be tabulated
as follows:—



(1) It gives a consistent explanation of Fizeau's and Michelson and
Morley's experiment.



(2) It leads mathematically at once to the value suggested by Fresnel
and experimentally verified by Fizeau for the velocity of a beam of
light through a moving refracting medium without making any hypothesis
about the physical nature of the liquid.



(3) It gives the contraction in the direction of motion for electrons
moving with high speed, without requiring any artificial hypothesis such
as that of Lorentz and Fitzgerald to explain it.



(4) It satisfactorily explains aberration, i.e. the influence of the
relative motion of the earth to the fixed stars upon the direction of
motion of the light which reaches us.



(5) It accounts for the influence of the radial component of the motion

of the stars, as shown by a slight displacement of the spectral lines of
the light which reaches us from the stars when compared with the
position of the same lines as produced by an earth source.



(6) It accounts for the "fine structure" of the spectral lines emitted by
the atom.[20]



(7) It gives the expression for the increase of inertia, owing to the
addition of (apparent) electromagnetic inertia of a charged body in
motion.






[20]See Sommerfeld, "Atomic Structure and Spectral Lines," p. 474.




The last result, however, introduces an anomaly inasmuch as the inertial
mass of a quickly-moving body increases, but not the gravitational mass,
i.e. there is an increase of inertia without a corresponding increase of
weight asserting itself. One of the most firmly established facts in all
physics is hereby transgressed. This result of the theory suggested a
new basis for a more general theory of relativity, viz. that proposed by
Einstein in 1915. As the special theory of relativity deals only with
uniform, rectilinear motions, its structure is not affected by any
alteration of the ideas underlying gravitation.











III. The General Theory of Relativity



We have seen that the first or "mechanical" theory of relativity was
built up on the notion of inertial systems as deduced from the law of
inertia; the "special" theory of relativity was built up on the
universal significance and invariance of  , the velocity of light in
vacuo; the third or general form of relativity is to be founded on the
principle of the equality of inertial and gravitational mass and in
contradistinction to the other two is to hold not only for systems
moving uniformly and rectilinearly with respect to one another, but for

all systems whatever their motion; i.e. physical laws are to preserve
their form for any arbitrary transformation of the variables from one
system to another.



Mass enters into the formulæ of the older physics in two forms: (1)
Force = inertial mass multiplied by the acceleration. (2) Force =
gravitational mass multiplied by the intensity of the field of
gravitation; or,
 
 



Observation tells us that for a given field of gravitation the
acceleration is independent of the nature and state of a body; this
means that the proportionality between the two characteristic masses
(inertial and gravitational) must be the same for all bodies. By a
suitable choice of units we can make the factor of proportionality
unity, i.e.  .



This fact had been noticed in classical mechanics, but not interpreted.



Eötvös in 1891 devised an experiment to test the law of the equality
of inertial and gravitational mass: he argued that if the centre of
inertia of a heterogeneous body did not coincide with the centre of
gravity of the same body, the centrifugal forces acting on the body due
to the earth's rotation acting at the centre of inertia would not, when
combined with the gravitational forces acting at the centre of
gravitational mass, resolve into a single resultant, but that a torque
or turning couple would exist which would manifest itself, if the body
were suspended by a very delicate torsionless thread or filament. His
experiment disclosed that the law of proportionality of inertial and
gravitational mass is obeyed with extreme accuracy: fluctuations in the
ratio could only be less than a twenty-millionth.




Einstein hence assumes the exact validity of the law, and asserts that
inertia and gravitation are merely manifestations of the same quality
of a body according to circumstances. As an illustration of the
purport of this equivalence he takes the case of an observer enclosed in
a box in free space (i.e. gravitation is absent) to the top of which a
hook is fastened. Some agency or other pulls this hook (and together
with it the box) with a constant force. To an observer outside, not
being pulled, the box will appear to move with constant acceleration
upwards, and finally acquire an enormous velocity. But how would the
observer in the box interpret the state of affairs? He would have to use
his legs to support himself and this would give him the sensation of
weight. Objects which he is holding in his hands and releases will fall
relatively to the floor with acceleration, for the acceleration of the
box will no longer be communicated to them by the hand; moreover, all
bodies will "fall" to the floor with the same acceleration. The observer
in the box, whom we suppose to be familiar with gravitational fields,
will conclude that he is situated in a uniform field of gravitation: the
hook in the ceiling will lead him to suppose that the box is suspended
at rest in the field and will account for the box not falling in the
field. Now the interpretation of the observer in the box and the
observer outside, who is not being pulled, are equally justifiable and
valid, as long as the equality of inertial and gravitational mass is
maintained.



We may now enunciate Einstein's Principle of Equivalence: Any change
which an observer perceives in the passage of an event to be due to a
gravitational field would be perceived by him exactly in the same way,
if the gravitational field were not present and provided that

he—the observer—make his system of reference move with the
acceleration which was characteristic of the gravitation at his point of
observation.



It might be concluded from this that one can always choose a rigid body
of reference such that, with respect to it, no gravitational field
exists, i.e. the gravitational field may be eliminated; this, however,
only holds for particular cases. It would be impossible, for example, to
choose a rigid body of reference such that the gravitational field of
the earth with respect to it vanishes entirely.



The principle of equivalence enables us theoretically to deduce the
influence of a gravitational field on events, the laws of which are
known for the special case in which the gravitational field is absent.



We are familiar with space-time-domains, which are approximately
Galilean when referred to an appropriate rigid body of reference. If we
refer such a domain to a rigid body of reference   moving
irregularly in any arbitrary fashion, we may assume that a gravitational
field varying both with respect to time and to space is present for
 : the nature of this field depends on the choice of the
motion of  . This enabled Einstein to discover the laws
which a gravitational field itself satisfies. It is important to notice
that Einstein does not seek to build up a model to explain gravitation
but merely proposes a theory of motions. His equations describe
the motion of any body in terms of co-ordinates of the space-time
manifold, making use of the interchangeability and equivalence implied
in relativity. He does not discuss forces as such; they are,
after all, as Karl Pearson states, "arbitrary conceptual measures of
motion without any perceptual equivalent." They are simply
intermediaries which have been inserted between matter 'and motion from
analogy with our muscular sense.




A direct consequence of the application of the Principle of Equivalence
in its general form is that the velocity of light varies for different
gravitational fields, and is constant only for uniform fields (this does
not contradict the special theory of relativity, which was built up for
uniform fields, and only makes it a special case of this much more
general theory of relativity). But change of velocity implies
refraction, i.e. a ray of light must have a curved path in passing
through a variable field of gravitation. This affords a very valuable
test of the truth of the theory, since a star, the rays from which pass
very near the sun before reaching us, would have to appear displaced
(owing to the stronger gravitational field around the sun), in
comparison with its relative position when the sun is in another part of
the heavens: this effect can only be investigated during a total eclipse
of the sun, when its light does not overpower the rays passing close to
it from the star in question.[21]
The calculated curvature is, of course, exceedingly small (1·7 seconds of
arc), but, nevertheless, should be observable.






[21]We shall return to this test at the conclusion of the chapter.




The motion of the perihelion of Mercury, discovered by Leverrier, which
long proved an insuperable obstacle regarded in the light of Newtonian
mechanics, is immediately accounted for by the general theory of
relativity; this is a very remarkable confirmation of the theory.



Before we finally enunciate the general theory of relativity, it is
necessary to consider a special form of acceleration, viz. rotation. Let
us suppose a space-time-domain (referred to a rigid body  )
in which the first Newtonian Law holds, i.e. a Galilean field: we shall
suppose a second rigid body of reference   to be rotating

uniformly with respect to  , say a plane disc rotating in
its plane with constant angular velocity. An observer situated on the
disc near its periphery will experience a force radially outwards, which
is interpreted by an external observer at rest relatively to  
as centrifugal force, due to the inertia of the rotating observer.
But according to the principle of equivalence the rotating observer is
justified in assuming himself to be at rest, i.e. the disc to be at
rest. He regards the force acting on him as an effect of a particular
sort of gravitational field (in which the field vanishes at the centre
and increases as the distance from the centre outwards). This rotating
observer, who considers himself at rest, now performs experiments with
clocks and measuring-scales in order to be able to define time- and
space-data with reference to  . It is easy to show that
if, of two clocks which go at exactly the same rate when relatively at
rest in the Galilean field  , one be placed at the centre of
the rotating disc and one at the circumference, the latter will
continually lose time as compared with the former.



Secondly, if an observer at rest in   measure the radius and
circumference of the rotating disc, he will obtain the same value for
the radius as when the disc is at rest, but since, when he measures the
circumference of the disc, the scale lies along the direction of motion,
it suffers contraction, and, consequently, will divide more often into
the circumference than if the scale and the disc were at rest. (The
circumference does not change, of course, in rotation.) That
is, he would get a value greater than   for the ratio
 . This means that
Euclidean geometry does not hold for the observer making his observations
on the disc, and we are obliged to use co-ordinates which will enable his

results to be expressed consistently. Gauss invented a method for the
mathematical treatment of any continua whatsoever, in which
measure-relations ("distance" of neighbouring points) are defined. Just
as many numbers (Gaussian or curvilinear co-ordinates) are assigned to
each point as the continuum has dimensions. The allocation of numbers is
such that the uniqueness of each point is preserved and that numbers
whose difference is infinitely small are assigned to infinitely near
points. This Gaussian or curvilinear system of co-ordinates is a logical
generalization of the Cartesian system. It has the great advantage of
also being applicable to non-Euclidean continua, but only in the cases
in which infinitesimal portions of the continuum considered are of the
Euclidean form. This calls to mind the remarks made at the commencement
of this sketch about the validity of geometrical theorems. It seems as
though the miniature view that we can take of straight lines in the
immensity of space led to a firm belief in the universal significance of
Euclidean geometry. When we deal with light phenomena which range to
enormous distances, we find that we are not justified in confining
ourselves to Euclidean geometry; the "straightest" line in the
time-space-manifold is "curved." We must therefore choose that geometry
which, expressed analytically, enables us to describe observed phenomena
most simply: it is clear that for even large finite portions of space
the non-Euclidean geometry chosen must practically coincide with
Euclidean geometry.



We now see that the general theory of relativity cannot admit that
all rigid bodies of reference  ,  ,
etc., are equally justifiable for the description of the general laws
underlying the phenomena of physical nature, since it is, in general,

not possible to make use of rigid bodies of reference for space-time
descriptions of events in the manner of the special theory of
relativity. Using Gaussian co-ordinates, i.e. labelling each point in
space with four arbitrary numbers in the way specified above (three of
these correspond to three space dimensions and one to time), the general
principle of relativity may be enunciated thus:—



All Gaussian four-dimensional co-ordinate-systems are equally
applicable for formulating the general laws of physics. This carries
the principle of relativity, i.e. of equivalence of systems, to an
extreme limit.



With regard to the relativity of rotations, it may be briefly mentioned
that centrifugal forces can, according to the general theory of
relativity, be due only to the presence of other bodies. This will be
better understood by imagining an isolated body poised in space; there
could be no meaning in saying that it rotated, for there would be
nothing to which such a rotation could be referred: classical mechanics
however, asserts that, in spite of the absence of other bodies,
centrifugal forces would manifest themselves: this is denied by the
general theory of relativity. No experimental test has hitherto been
devised which could be carried out practically to give a decision in
favour of either theory.



A favourable opportunity for detecting the slight curvature of light
rays (which is predicted by the general theory) when passing in close
vicinity to the sun occurred during the total eclipse of the 29th May,
1919. The results, which were made public at the meeting of the Royal
Society on 6th November following, were reported as confirming the
theory.



In addition to the slight motion of Mercury's perihelion, there is still a
third test which is based upon a shift of the spectral line towards the

infra-red, as a result of an application of Doppler's principle; this
has not yet led to a conclusive experimental result.











I. NOTE ON NON-EUCLIDEAN GEOMETRY



In practical geometry we do not actually deal with straight lines, but
only with distances, i.e. with finite parts of straight lines, yet we
feel irresistibly impelled to form some conception of the parts of a
straight line which vanish into inconceivably distant regions. We are
accustomed to imagining that a straight line may be produced to an
infinite distance in either direction, yet in our mathematical reasoning
we find that in order to preserve consistency (in Euclid),[22]
we may only allocate to this straight line one point at infinity:
we say that two straight lines are parallel when they cut at a point at
infinity, i.e. this point is at an .infinite distance from an arbitrary
starting-point on either straight line, and is reached by moving
forwards or backwards on either.






[22]According to the modern analytical interpretation of Euclid.




Many attempts have been made, without success, to deduce Euclid's "axiom
of parallels," which asserts that only one straight line can be drawn
parallel to another straight line through a point outside the latter,
from the other axioms. It finally came to be recognized that this axiom
of parallels was an unnecessary assumption, and that one could quite
well build up other geometries by making other equally justified
assumptions.
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If we consider a point,  , outside a straight line,   (Fig. 4), to send out rays in all directions, then,
starting from the perpendicular position   we find that
the more obliquely the ray falls on   the farther does the point of
intersection  

travel along   to the left (say). Our experience teaches us that the
ray and   have one point in common. There is no justifiable reason,
however, for asserting, as Euclid's axiom does, that for a final infinitely
small increase of the angle  (i.e. additional
turn of   about P), an suddenly bounds off to infinity along
 , i.e.  , the point of intersection leaves finite regions
to disappear into so-called "infinity," and that, for a further
infinitesimal increase,  , reappears at infinity at the other
end of   to the right of  .



One might equally well assume, as Lobatschewsky did, that
  and   form an angle which
differs ever so slightly from two right angles, and that there are an
infinite number of other straight lines included between these two
positions (as indicated by the dotted lines in the figure), which do not
cut   at all, Lobatschewsky (and also Bolyai) built up an entirely
consistent geometry on this latter assumption.



Riemann later abolished the assumption of infinite length of a straight
line, and assumed that in travelling along a straight line sufficiently
far one finally arrives at the starting-point again without having
encountered any limit or barrier. This means that our space is regarded
as being finite but unbounded.[23]






[23]E.g. the surface of a sphere cuts a finite volume out of space,
but particles sliding on the surface nowhere encounter boundaries or
barriers. This is a three-dimensional analogon to the
four-dimensional space-time manifold of Minkowski. It does not mean
that the universe is enclosed by a spherical shell, as was supposed by
the ancients. We cannot form a picture of the corresponding result
in the four-dimensional continuum in which, according to the general
theory of relativity, we live.







Thus in Riemann's case there is no parallel line to   for
  never leaves  ; there is no  . This
geometry was called, by Klein elliptical geometry (and includes
spherical geometry as a special case).
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He calls Euclidean geometry parabolic (Fig. 5),
for the branches of a parabola continue to recede from one to another,
and yet in order to obtain consistent results in its formulæ we are
obliged only to assign one point at infinity to it, just as to the
Euclidean straight line. Lobatschewsky's geometry is similarly called
hyperbolic (Fig. 5), since a hyperbola has two
points at infinity, corresponding in analogy to the two points at
infinity at which the two parallels through a point external to a
straight line cut the latter.



The fact that one is obliged to renounce Euclidean geometry in the
general theory of relativity leads to the conclusion that our space is
to be regarded as finite but unbounded: it is curved, as Einstein
expresses it, like the faintest of ripples on a surface of water.

















SOME ASPECTS OF RELATIVITY


THE THIRD TEST


BY HENRY L. BROSE, M.A.



UP to the present, three methods of verifying
Einstein's Theory of Relativity have been suggested.



The first one, which was a direct outcome of the new gravitational
field-equations proposed by Einstein, proved successful. The slow motion
of Mercury's perihelion which long mystified astronomers was immediately
accounted for. This result is the more remarkable as all other
explanations of this phenomena were artificial in origin, consisting of
a hypothesis formulated ad hoc which could not be verified by
observation.



The second method involved the deflection of a ray of light in its
passage through a varying gravitational field. The results of the total
eclipse of the sun which occurred on 29th May, 1919, have become famous
and were recorded as confirming Einstein's prediction. The results of a
more recent expedition have proved finally conclusive.



The third test, the results of which are still in abeyance, is perhaps
the most important of the three, inasmuch as it depends upon a very
simple calculation from Einstein's Principle of Equivalence, which

asserts that an observer cannot discriminate how much of his motion is
due to a gravitational field and how much is due to an acceleration of
his body of reference. Einstein illustrates his argument by supposing an
observer situated in a closed box in free space. The observer has at
first no sensation of weight, and need not support himself upon his
feet. Now suppose an external agent to pull the box in a definite
direction with constant force. The observer in the box performs
experiments with masses of variable material, and as they all fall to
the "floor" of the box at the same time, he concludes that he is in a
gravitational field. He himself has acquired the sensation of weight.
This result led Einstein to propound the equivalence of gravitational
and accelerational fields. An immediate consequence of this principle is
that the duration of an event depends upon the gravitational conditions
at the place of the event.



If we consider the light (of frequency  ) which is emitted by a
distant star, and suppose it to traverse a practically invariable
gravitational field in which bodies are assumed to fall with
a constant acceleration  , then an observer at a distance  
from the star will have attained a velocity
 
where   is the velocity of light and the distance   is small in
comparison with the distance traversed by the observer in the time the
light takes to reach him. By Doppler's Principle, the apparent frequency
  is given by
 
Potential of unit mass moved through a distance   is
  (say). This gives the work done in moving unit mass

from the source of light to the observer (the source of light is here the
point to which the potential energy is referred in the field).



Therefore, if we transform the accelerational field of the observer into
the gravitational field, we get the result:
 



This means that a spectral line of frequency   will appear to
a distant observer to be displaced, if compared with the position of the
same line, when produced by a source at a different point in the field.
Each of these lines, produced by vibrating electrons, may be regarded as
a clock, and this simple calculation shows how time-measurements are
affected by the state of the gravitational field. This effect amounts to
0·008 Ångstroms, for a wavelength of 4000 Å. The same displacement
would be produced as a Doppler effect by a velocity of 0·6 kms. per
sec. When this test was put into practice, it was found difficult to
discriminate it from the various superposed effects due to other causes
such as the radial velocities of the stars, proper velocities of the
gaseous envelopes, pressure, etc. The conditions of the emission of
light by the sun have not been fully ascertained, nor is the light of
the arc lamp free from disturbing elements. Dr. Erwin Freundlich, of the
Neubabelsberg Observatory, has discussed, in conjunction with Professor
Einstein, the possibility of recognizing this effect in spite of these
obscuring influences. He points out three ways of establishing the
result quantitatively. They may be briefly classified as being based on
(1) statistical methods; (2) nebular spectra; (3) calcium lines in the
spectra of the atmosphere surrounding double-stars.



I. If we consider a great number of stars of about the same mass

evenly distributed over the heavens, and represent the spectral shift
due to radial velocities (i.e. velocities in the line of sight)
graphically, we should expect these velocities to be distributed
according to the law of probability about the value zero, i.e. as
depicted by Gauss's Error Curve, which resembles a vertical section of a
bell. If, however, Einstein's gravitational effect really exists, we
should expect these velocities to group themselves symmetrically about a
positive velocity which would be that corresponding to this spectral
shift. Gauss's Error Curve would thus appear displaced by precisely the
amount of the radial velocity corresponding to this shift, as all the
radial velocities would be falsified by just this amount.



The values of the radial velocities have been plotted in the case of
 -stars, called Helium stars on account of the predominance of
helium lines in their spectra. Other observations have led astronomers
to infer that the  -stars have unusually great masses but small
densities. The result has been distinctly in favour of the Einstein
shift on the basis of the foregoing discussion. The same was found to
hold for the bright  - and  -stars, which are considered to be
at a lower temperature and possessed of enormous surface extent, which
accounts for their brilliance.



If we indicate the mean shift of the lines towards the red by  ,
then for
 
  is here expressed in terms of a Doppler shift as a velocity, i.e.
as if the Einstein shift were due to an additional radial motion and
hence expressible in kilometres.




Alternative ways of accounting for this shift have been proposed.



(a) It may be regarded as an ordinary Doppler effect. This would
imply that the stars of the  ,  , and   type suffer a
general expansion to which stars of the   and   type (yellow
stars like the sun) and the  -stars are not subject.



This explanation does not seem very probable, as helium lines were used
in determining the shift for the  -stars, whereas quite different
lines were used for measuring the effect for the  - and  -stars.
It would be a strange coincidence if this shift, to which all the
evidence points as arising from a common origin, should be manifested
just in these cases which have been made the object of an investigation.



(b) The general shift towards the red might be ascribed to
pressure effects at the surfaces of the stars or to the presence of
other lines which lie on the red side of the main lines, but which are
very weak or even absent in the comparison spectrum of the sun. A
detailed knowledge of conditions on the surfaces of stellar bodies could
alone give a decision on this point.



2. It is only possible to prove that the shift   is not due to a
radial velocity if one can measure the ordinary Doppler effect arising
from the radial velocity separately. Let us consider a single  -star
or group of  -stars which happen to be embedded in a nebula of great
extent which accompanies them in their motion. The Doppler effect due to
the radial velocity would be the same for the star as the nebula, but
the gravitational effect predicted by Einstein would not be the same,
inasmuch as the gravitational field at the surface of the star will vary
considerably from that at the outer edge of the nebula. Hence it would

be reasonable to attribute any difference in the magnitude of the
spectral shifts in the case of the star and the nebula to the difference
in gravitational fields at each place.



The stars of the nebular group of Orion have hitherto offered the only
possibility of applying this method. The results have fulfilled
Einstein's expectations qualitatively, and it remains to be seen whether
the agreement will hold quantitatively. A general shift of the
star-spectrum as compared with the corresponding lines of the associated
nebula was observed.



Some very bright  -stars in the constellation of Orion are
considered to form an entity with their attendant nebula. This
conclusion was reached as the result of independent research.



The radial velocity of the Orion-nebula has been measured by various
observers. The values obtained are: 17.7 (Wright), 17.4 (Vogel and
Eberhardt), 18.5 (Frost and Adams). The mean value is 17.4 kms. per sec.
This velocity is derived from the brightest part of the nebula, the
so-called trapezium. The values obtained in the case of the stars almost
all exceed 20 kms. per sec., and hence it seems likely that part of this
radial velocity, viz. the excess over that of the nebula, is due to the
Einstein effect. When the difference between the radial velocities of
the stars and the associated nebula are tabulated for each star, we find
that in the case of all members except two the difference is positive,
i.e. indicative of a shift towards the red end, in agreement with the
statistical investigation applied to the  -,  -, and M-stars.
The difference amounts to  ,
and is a little greater than that given by the statistical method.



The two stars   and 36 Orionis give a displacement towards the
violet end. It has been suggested that they do not belong to the more

limited group of Orion stars, but are only projected into that portion
of the celestial sphere. This is supported by the fact that both stars
have only very small spherical proper motions, and that the radial
velocities observed for them differ considerably from the mean of the
radial velocities of the others.



This method has not been successfully applied to other stellar systems
inasmuch as the nebulæ of those which are available emit such feeble
light that it has not been possible to establish the displacement to any
degree of accuracy. Eddington recently pointed out that a very important
factor had been neglected in the fundamental equations of the early
theories concerning the equilibrium of stellar matter, viz. the pressure
due to radiation. According to his theory, the equilibrium in the
interior of the star (regarded as a gaseous sphere) is determined by
three conditions. These are gaseous pressure, radiational pressure, and
gravitational forces.



Calculation shows that for very great masses the gravitational pressure
is almost entirely balanced by radiational pressure. This implies that
any additional force such as that due to a centrifugal field of rotation
would lead to an unstable condition.



It can, furthermore, be deduced from Eddington's theory that only stars
whose masses exceed a certain minimum value can in the course of their
evolution reach the very high surface-temperatures which have been
observed in the case of the  - and  -stars.



It therefore seems likely that the  - and  -stars have in the
process of evolution passed through a stage of which the radiational
pressure has brought about a condition of unstable equilibrium, and one
might expect them to be surrounded by cosmic dust which has become
dissociated from the nuclei of the system.



In some cases this dissociated matter may be in a very fine state

of division, and may extend so far into space that the absorption lines
they produce in the spectrum of the star they surround may originate
from a gravitational field which differs perceptibly from that at the
surface of the star. There are definite signs of the existence of such
atmospheres. A high percentage of  -stars are found to be
spectroscopic double stars, i.e. their spectral lines fluctuate
periodically about some mean position. Hartmann was the first to notice
that in the spectrum of the  -star  . Orionis the absorption lines
  and   of calcium, viz. 3933.82 and 3968.63 Ångstroms, occur,
but that they do not share in the periodic movements of the other lines.
A number of other stars belonging to early spectral types contain
calcium absorption lines in their spectra, which exhibit a similar
anomaly, inasmuch as they either remain immovable or execute periodic
motions which are of feeble amplitude compared with the proper stellar
lines. In view of the important rôle that calcium plays in the
outermost layers of the gaseous atmosphere encircling the sun, and in
view of the discussion above, the suggestion forces itself upon one that
these calcium lines indicate the presence of an extensive atmosphere
surrounding the star.



It has often been put forward that these lines are due to the light from
these stars being absorbed by vast interstellar clouds of calcium.
Evershed considers that this is supported by the fact that when the
motion of the solar system is subtracted from that calculated from the
fixed calcium lines (owing to the ordinary Doppler effect), the
remaining motion is very small. But this argument does not carry weight
inasmuch as it is known that the  -stars, in the spectrum
of which these lines occur, themselves have very small radial
velocities. As Young remarked, it seems very strange that these calcium

clouds should so consistently choose to lie in front of stars of type
  or earlier. An objection against this hypothesis is to be found in
the fact that in the case of various systems these two calcium lines are
not at rest but move, although with somewhat less amplitude than the
other proper lines of the double star.



An additional circumstance which lends support to the theory that
calcium lines denote the presence of an atmosphere around the star is
that a great number of helium-stars are enveloped in a nebulous
atmosphere which is actually visible.



Assuming then that the calcium absorption lines are due to such
atmospheres, we may apply the same process as in the case of the Orion
nebula, i.e. if the shifts of the spectral-lines of the stars be
systematically falsified by a superposed gravitational effect, this
should be expressed by the lines of the actual spectrum from a double
star being displaced towards the red as compared with the fixed calcium
lines.



This phenomenon has been clearly observed. The result has not yet been
quantitatively fixed, as the numbers taken are not regarded as
final.



All stars in the spectra of which the   and   lines of calcium
occur have been used to test the conclusion, and all show a shift to the
red end; the mean of the shifts corresponds to a velocity of + 6.3 kms.
per sec.



The results of this discussion have been formulated by Dr. Freundlich
thus:—








SUMMARY



1. Statistical consideration gives us the means of separating the mean
gravitational effect from the ordinary Doppler effect in the case of the
helium  -stars and the bright  - and  -stars, which

astronomical investigations compel us to regard as being of particularly
great mass.



A general shift of the spectra towards the red is exhibited with
considerable certainty.



2. It follows from a comparison of the displacement of the lines of the
star-spectra that the above displacement which was found by a
statistical examination is not an ordinary Doppler effect, but is due to
the conditions of emission of light at the surfaces of the stars.



3. The close connection of the  - and  -stars with nebulous
matter in the heavens is a symptom that these stars are of great mass.



4. If we regard the fixed calcium lines in the spectra of  - and
 -stars as being caused by absorption in extended calcium
atmospheres moving with each star in question, the shift towards the red
which manifests itself may be regarded as the effect predicted by
Einstein's theory, i.e. due to the different gravitational fields from
which the absorption lines and the stellar lines have originated.
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